File: test_op_strategy.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (343 lines) | stat: -rw-r--r-- 13,076 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# Owner(s): ["oncall: distributed"]

from itertools import chain

import torch
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import (
    DTensorSpec,
    Partial,
    Replicate,
    Shard,
    TensorMeta,
)
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy
from torch.distributed.tensor._ops._einsum_strategy import (
    EinsumDims,
    gen_einsum_strategies,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase


class TestEinsumDims(TestCase):
    def test_batch_dims(self):
        equation = "abc,abc->abc"
        input_dims, output_dim = EinsumDims.parse_equation(equation)
        edims = EinsumDims.parse_dims(input_dims, output_dim)

        self.assertEqual(edims.batch_dims, ["a", "b", "c"])
        self.assertEqual(edims.contracting_dims, [])
        self.assertEqual(edims.lhs_out_only_dims, [])
        self.assertEqual(edims.rhs_out_only_dims, [])

    def test_mm_dims(self):
        equation = "mk,kn->mn"
        input_dims, output_dim = EinsumDims.parse_equation(equation)
        edims = EinsumDims.parse_dims(input_dims, output_dim)

        self.assertEqual(edims.batch_dims, [])
        self.assertEqual(edims.contracting_dims, ["k"])
        self.assertEqual(edims.lhs_out_only_dims, ["m"])
        self.assertEqual(edims.rhs_out_only_dims, ["n"])

    def test_bmm_dims(self):
        equation = "bmk,bkn->bmn"
        input_dims, output_dim = EinsumDims.parse_equation(equation)
        edims = EinsumDims.parse_dims(input_dims, output_dim)

        self.assertEqual(edims.batch_dims, ["b"])
        self.assertEqual(edims.contracting_dims, ["k"])
        self.assertEqual(edims.lhs_out_only_dims, ["m"])
        self.assertEqual(edims.rhs_out_only_dims, ["n"])

        equation = "bcmk,bckn->bcmn"
        input_dims, output_dim = EinsumDims.parse_equation(equation)
        edims = EinsumDims.parse_dims(input_dims, output_dim)

        self.assertEqual(edims.batch_dims, ["b", "c"])
        self.assertEqual(edims.contracting_dims, ["k"])
        self.assertEqual(edims.lhs_out_only_dims, ["m"])
        self.assertEqual(edims.rhs_out_only_dims, ["n"])

    def test_free_dims(self):
        equation = "abc,ab->abc"
        input_dims, output_dim = EinsumDims.parse_equation(equation)
        edims = EinsumDims.parse_dims(input_dims, output_dim)

        self.assertEqual(edims.batch_dims, ["a", "b"])
        self.assertEqual(edims.contracting_dims, [])
        self.assertEqual(edims.lhs_out_only_dims, ["c"])
        self.assertEqual(edims.rhs_out_only_dims, [])

        equation = "abd,bf->abfd"
        input_dims, output_dim = EinsumDims.parse_equation(equation)
        edims = EinsumDims.parse_dims(input_dims, output_dim)

        self.assertEqual(edims.batch_dims, ["b"])
        self.assertEqual(edims.contracting_dims, [])
        self.assertEqual(edims.lhs_out_only_dims, ["a", "d"])
        self.assertEqual(edims.rhs_out_only_dims, ["f"])


class TestEinsumStrategies(DTensorOpTestBase):
    @property
    def world_size(self) -> int:
        return 4

    def test_mm_1d_mesh(self):
        mesh = self.build_device_mesh()

        all_strats = gen_einsum_strategies("mk,kn->mn", mesh)
        self.assertEqual(len(all_strats.strategies), 4)

    def test_mm_2d_mesh(self):
        mesh = DeviceMesh(self.device_type, torch.arange(self.world_size).reshape(2, 2))

        all_strats = gen_einsum_strategies("mk,kn->mn", mesh)
        self.assertEqual(len(all_strats.strategies), 16)

    def test_bmm_1d_mesh(self):
        mesh = self.build_device_mesh()

        all_strats = gen_einsum_strategies("bmk,bkn->bmn", mesh)
        self.assertEqual(len(all_strats.strategies), 5)

    def test_bmm_2d_mesh(self):
        mesh = DeviceMesh(self.device_type, torch.arange(self.world_size).reshape(2, 2))

        all_strats = gen_einsum_strategies("bmk,bkn->bmn", mesh)
        self.assertEqual(len(all_strats.strategies), 25)

    def test_pointwise_1d_mesh(self):
        mesh = self.build_device_mesh()

        simple_strats = gen_einsum_strategies("abcd,abcd->abcd", mesh)
        self.assertEqual(len(simple_strats.strategies), 5)

        broadcast_strats = gen_einsum_strategies("bcd,abcd->abcd", mesh)
        self.assertEqual(len(broadcast_strats.strategies), 5)

    def test_linearity_1d_mesh(self):
        mesh = self.build_device_mesh()

        all_strats = gen_einsum_strategies("abcd,abcd->abcd", mesh, linearity=True)
        self.assertEqual(len(all_strats.strategies), 6)


class TestCostModel(DTensorOpTestBase):
    def _extract_tensor_meta(self, t) -> TensorMeta:
        return TensorMeta(t.shape, t.stride(), t.dtype)

    @property
    def world_size(self) -> int:
        return 4

    def test_redistribute_cost_mesh_1d(self):
        mesh_1d = self.build_device_mesh()
        shard_placement = (Shard(0),)
        replica_placement = (Replicate(),)
        partial_placement = (Partial(),)

        global_tensor = torch.randn(10, 10)
        global_tensor_meta = self._extract_tensor_meta(global_tensor)

        # shard spec
        shard_spec = DTensorSpec(mesh_1d, shard_placement, global_tensor_meta)
        # replica spec
        replica_spec = DTensorSpec(mesh_1d, replica_placement, global_tensor_meta)
        # partial spec
        partial_spec = DTensorSpec(mesh_1d, partial_placement, global_tensor_meta)

        # make sure reshard cost is 0 for the same spec redistribute
        for spec in [shard_spec, replica_spec, partial_spec]:
            cost = redistribute_cost(spec, spec)
            self.assertEqual(cost, 0)

        # shard -> replicate
        allgather_cost = redistribute_cost(shard_spec, replica_spec)
        # partial -> shard
        reduce_scatter_cost = redistribute_cost(partial_spec, shard_spec)
        # partial -> replicate
        allreduce_cost = redistribute_cost(partial_spec, replica_spec)
        self.assertEqual(allgather_cost, reduce_scatter_cost)
        self.assertTrue(allreduce_cost + 1 < allgather_cost + reduce_scatter_cost)
        # shard to partial
        cost = redistribute_cost(shard_spec, partial_spec)
        self.assertEqual(cost, float("inf"))

    def test_redistribute_cost_latency(self):
        # test cost model on addmm op
        from torch.distributed.tensor._ops._matrix_ops import addmm_strategy

        mesh = self.build_device_mesh()
        shard0_placement = (Shard(0),)
        partial_placement = (Partial(),)
        shard1_placement = (Shard(1),)

        shard0_tensor_meta = self._extract_tensor_meta(torch.randn(8))
        partial_tensor_meta = self._extract_tensor_meta(torch.randn(50, 6))
        shard1_tensor_meta = self._extract_tensor_meta(torch.randn(6, 8))

        # shard spec
        shard0_spec = DTensorSpec(mesh, shard0_placement, shard0_tensor_meta)
        # replica spec
        partial_spec = DTensorSpec(mesh, partial_placement, partial_tensor_meta)
        # partial spec
        shard1_spec = DTensorSpec(mesh, shard1_placement, shard1_tensor_meta)

        op_schema = OpSchema(
            torch.ops.aten.addmm.default,
            (
                OpStrategy([PlacementStrategy(shard0_spec)]),
                OpStrategy([PlacementStrategy(partial_spec)]),
                OpStrategy([PlacementStrategy(shard1_spec)]),
            ),
            {},
        )

        output_strategy = addmm_strategy(mesh, op_schema)
        strategy_costs = {}
        for strategy in output_strategy.strategies:
            redistribute_cost = sum(chain.from_iterable(strategy.redistribute_cost))
            strategy_costs[str(strategy)] = redistribute_cost

        # assert that cost model counts for collective latency (i.e. multiple comm is penalized)
        self.assertTrue(
            strategy_costs["(S(0), R, S(1)) -> S(1)"]
            < strategy_costs["(R, S(0), R) -> S(0)"]
        )
        # assert a single allreduce is the best one
        self.assertEqual(
            strategy_costs["(S(0), R, S(1)) -> S(1)"], min(strategy_costs.values())
        )

    def test_redistribute_cost_mesh_2d(self):
        mesh_2d = DeviceMesh(
            self.device_type, torch.arange(self.world_size).reshape(2, 2)
        )
        shard_placement = (Shard(0), Shard(0))
        replica_placement = (Replicate(), Replicate())
        partial_placement = (Partial(), Partial())

        global_tensor = torch.randn(8, 8)
        global_tensor_meta = self._extract_tensor_meta(global_tensor)

        # shard spec
        shard_spec = DTensorSpec(mesh_2d, shard_placement, global_tensor_meta)
        # replica spec
        replica_spec = DTensorSpec(mesh_2d, replica_placement, global_tensor_meta)
        # partial spec
        partial_spec = DTensorSpec(mesh_2d, partial_placement, global_tensor_meta)

        # make sure reshard cost is 0 for the same spec redistribute
        for spec in [shard_spec, replica_spec, partial_spec]:
            cost = redistribute_cost(spec, spec)
            self.assertEqual(cost, 0)

        # shard -> replicate
        allgather_cost = redistribute_cost(shard_spec, replica_spec)
        # partial -> replicate
        allreduce_cost = redistribute_cost(partial_spec, replica_spec)
        # partial -> shard
        reduce_scatter_cost = redistribute_cost(partial_spec, shard_spec)
        self.assertTrue(allreduce_cost > allgather_cost)
        self.assertTrue(allreduce_cost > reduce_scatter_cost)

    def test_mm_strategies(self):
        from torch.distributed.tensor._ops._matrix_ops import mm_strategy

        mesh = self.build_device_mesh()
        lhs_tensor = torch.randn(6, 8)
        rhs_tensor = torch.randn(8, 12)
        lhs_tensor_meta = self._extract_tensor_meta(lhs_tensor)
        rhs_tensor_meta = self._extract_tensor_meta(rhs_tensor)

        mm_combs = (
            (Shard(0), Replicate()),
            (Replicate(), Shard(1)),
            (Shard(1), Shard(0)),
            (Replicate(), Replicate()),
        )
        for lhs, rhs in mm_combs:
            lhs_spec = DTensorSpec(mesh, (lhs,), lhs_tensor_meta)
            rhs_spec = DTensorSpec(mesh, (rhs,), rhs_tensor_meta)

            op_schema = OpSchema(
                torch.ops.aten.mm.default,
                (
                    OpStrategy([PlacementStrategy(lhs_spec)]),
                    OpStrategy([PlacementStrategy(rhs_spec)]),
                ),
                {},
            )
            # test the strategy
            res_strategies = mm_strategy(mesh, op_schema)

            for strtgy in res_strategies.strategies:
                if strtgy.input_specs == (lhs_spec, rhs_spec):
                    self.assertEqual(strtgy.redistribute_cost, [[0.0], [0.0]])
                    break

            op_schema = OpSchema(
                torch.ops.aten.mm.default,
                (lhs_spec, rhs_spec),
                {},
            )
            # test sharding prop
            output_sharding = DTensor._op_dispatcher.sharding_propagator.propagate_op_sharding_non_cached(
                op_schema
            )
            self.assertFalse(output_sharding.needs_redistribute)

    def test_bmm_strategies(self):
        from torch.distributed.tensor._ops._matrix_ops import bmm_strategy

        mesh = self.build_device_mesh()
        lhs_tensor = torch.randn(8, 6, 8)
        rhs_tensor = torch.randn(8, 8, 12)
        lhs_tensor_meta = self._extract_tensor_meta(lhs_tensor)
        rhs_tensor_meta = self._extract_tensor_meta(rhs_tensor)

        bmm_combs = (
            (Shard(0), Shard(0)),
            (Shard(1), Replicate()),
            (Replicate(), Shard(2)),
            (Shard(2), Shard(1)),
            (Replicate(), Replicate()),
        )
        for lhs, rhs in bmm_combs:
            lhs_spec = DTensorSpec(mesh, (lhs,), lhs_tensor_meta)
            rhs_spec = DTensorSpec(mesh, (rhs,), rhs_tensor_meta)

            op_schema = OpSchema(
                torch.ops.aten.bmm.default,
                (
                    OpStrategy([PlacementStrategy(lhs_spec)]),
                    OpStrategy([PlacementStrategy(rhs_spec)]),
                ),
                {},
            )
            # test the strategy
            res_strategies = bmm_strategy(mesh, op_schema)

            for strtgy in res_strategies.strategies:
                if strtgy.input_specs == (lhs_spec, rhs_spec):
                    self.assertEqual(strtgy.redistribute_cost, [[0.0], [0.0]])
                    break

            op_schema = OpSchema(
                torch.ops.aten.bmm.default,
                (lhs_spec, rhs_spec),
                {},
            )
            # test sharding prop
            output_sharding = DTensor._op_dispatcher.sharding_propagator.propagate_op_sharding_non_cached(
                op_schema
            )
            self.assertFalse(output_sharding.needs_redistribute)


if __name__ == "__main__":
    run_tests()