1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import itertools
import torch
import torch.distributed._functional_collectives as funcol
import torch.distributed.tensor._random as random
from torch.distributed._tensor import DeviceMesh, DTensor, init_device_mesh
from torch.distributed._tensor._utils import compute_local_shape_and_global_offset
from torch.distributed._tensor.api import distribute_tensor
from torch.distributed._tensor.placement_types import Replicate, Shard
from torch.distributed.distributed_c10d import broadcast_object_list
from torch.distributed.fsdp import fully_shard
from torch.distributed.tensor._random import (
is_rng_supported_mesh,
manual_seed,
OffsetBasedRNGTracker,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import ColwiseParallel, parallelize_module
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
skip_unless_torch_gpu,
with_comms,
)
class DistTensorRandomInitTest(DTensorTestBase):
def _run_init_op(self, init_op, *args, **kwargs):
device_mesh = self.build_device_mesh()
shard_spec = [Shard(0)]
input_size = (8, 4)
# NOTE: currently random initialization on cuda device has different
# behavior from other devices. Unify the test once the behavior is unified.
if not is_rng_supported_mesh(device_mesh):
input_tensor = torch.randn(*input_size, device=self.device_type)
dtensor = DTensor.from_local(input_tensor, device_mesh, shard_spec)
local_tensor_clone = torch.clone(input_tensor)
torch.manual_seed(self.rank)
local_tensor_clone = init_op(local_tensor_clone, *args, **kwargs)
torch.manual_seed(self.rank)
dtensor = init_op(dtensor, *args, **kwargs)
self.assertEqual(local_tensor_clone, dtensor.to_local())
else:
# create DTensor from Tensor
_tensor = torch.empty(*input_size, device="cuda")
dtensor = distribute_tensor(_tensor, device_mesh, [Shard(1)])
# DTensor random init
dtensor = init_op(dtensor, *args, **kwargs)
local_tensor = dtensor.to_local()
# compare with local tensors from other ranks
for other_rank in range(self.world_size):
if self.rank != other_rank:
slice_idx = [
slice(input_size[0]),
slice(
other_rank * input_size[1], (other_rank + 1) * input_size[1]
),
]
# other rank should have a different local tensor
self.assertNotEqual(dtensor.full_tensor()[slice_idx], local_tensor)
@with_comms
def test_init_ops(self):
self._run_init_op(
torch.nn.init.kaiming_uniform_,
a=0,
mode="fan_in",
nonlinearity="leaky_relu",
)
self._run_init_op(torch.nn.init.normal_, mean=1.5, std=0.8)
self._run_init_op(torch.nn.init.uniform_, a=0, b=1.2)
for dtype in (torch.float32, torch.float16):
self._run_init_op(torch.rand_like, dtype=dtype)
self._run_init_op(torch.randn_like, dtype=dtype)
self._run_init_op(torch.randint_like, low=0, high=100, dtype=dtype)
class DistTensorRandomOpTest(DTensorTestBase):
@with_comms
@skip_unless_torch_gpu
def test_rng_tracker_init(self):
torch.cuda.manual_seed(self.rank)
object_list = [torch.cuda.initial_seed()]
broadcast_object_list(object_list)
seed_from_rank_0 = int(object_list[0])
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
# seed synchronization happens after the first `distribute_tensor` call
dtensor = distribute_tensor(
torch.empty([self.world_size], device="cuda"), device_mesh, [Shard(0)]
)
self.assertEqual(seed_from_rank_0, random._rng_tracker.get_seed("parallel-rng"))
@with_comms
@skip_unless_torch_gpu
def test_manual_seed(self):
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
# in the case of calling ``torch.distributed.tensor._random.manual_seed``,
# no seed synchronization should happen since we fully trust the users' input
# and will not override the value.
comm_mode = CommDebugMode()
with comm_mode:
# Test 1: set different seed on different ranks
# RNG tracker should not be initialized until DTensor ``manual_seed``
# is called.
self.assertTrue(random._rng_tracker is None)
manual_seed(self.rank, device_mesh)
# RNG tracker should already be initialized
self.assertTrue(random._rng_tracker is not None)
self.assertEqual(self.rank, random._rng_tracker.get_seed("parallel-rng"))
# Test 2: set same seed on different ranks
manual_seed(1234, device_mesh)
self.assertEqual(1234, random._rng_tracker.get_seed("parallel-rng"))
self.assertEqual(comm_mode.get_total_counts(), 0)
@with_comms
@skip_unless_torch_gpu
def test_manual_seed_submesh(self):
# the current rank is not a part of the mesh
single_rank_device_mesh = DeviceMesh(
self.device_type, [(self.rank + 1) % self.world_size]
)
with self.assertRaisesRegex(
RuntimeError,
"manual_seed requires the current rank to be a part of the device mesh",
):
manual_seed(self.rank, single_rank_device_mesh)
@with_comms
@skip_unless_torch_gpu
def test_pipeline_parallel_manual_seed(self):
# This test is to verify the `manual_seed` API works as expected in the
# pipeline parallel setting.
world_mesh = init_device_mesh(
self.device_type,
(self.world_size // 2, 2),
mesh_dim_names=("pp", "spmd"),
)
pp_mesh = world_mesh["pp"]
pp_rank = pp_mesh.get_local_rank() # rank 0,1 = 0; rank 2,3 = 1
spmd_mesh = world_mesh["spmd"]
# set the seed for each pipeline stage to 123 + pp_rank
manual_seed(123 + pp_rank, spmd_mesh)
self.assertEqual(123 + pp_rank, random._rng_tracker.get_seed("parallel-rng"))
# mimic initializing a model weight sharded on the SPMD mesh
spmd_dtensor = torch.distributed.tensor.ones(
2 * spmd_mesh.size(), 2, device_mesh=spmd_mesh, placements=[Shard(0)]
)
torch.nn.init.normal_(spmd_dtensor)
# gather all the shards to compare initialization results
WORLD = torch.distributed.group.WORLD
assert WORLD is not None
tensor_gather = funcol.all_gather_tensor(
spmd_dtensor.to_local(),
gather_dim=0,
group=WORLD,
)
# verify the weights are initialized differently on all ranks
for other_rank in range(self.world_size):
if self.rank != other_rank:
self.assertNotEqual(
spmd_dtensor.to_local(),
tensor_gather[2 * other_rank : 2 * (other_rank + 1), :],
)
@with_comms
@skip_unless_torch_gpu
def test_tp_model_meta_init(self):
# initialize the 1-d device mesh for TP
tp_mesh = init_device_mesh(self.device_type, mesh_shape=(self.world_size,))
# model meta init
with torch.device("meta"):
model = torch.nn.Linear(self.world_size, self.world_size, bias=False)
self.assertEqual(model.weight.device, torch.device("meta"))
parallelize_module(model, tp_mesh, ColwiseParallel())
if random._rng_tracker is not None:
random._rng_tracker.distribute_region_enabled = True
self.assertEqual(model.weight.device, torch.device("meta"))
# actual initialization
device = torch.device("cuda", torch.cuda.current_device())
model.to_empty(device=device)
model.reset_parameters()
self.assertTrue(
random._rng_tracker is not None
and isinstance(random._rng_tracker, OffsetBasedRNGTracker)
)
self.assertEqual(model.weight.device, device)
assert isinstance(model.weight, DTensor)
# gather all the shards to compare initialization results
WORLD = torch.distributed.group.WORLD
assert WORLD is not None
weight_local = model.weight.to_local()
weight_gather = funcol.all_gather_tensor(
weight_local,
gather_dim=0,
group=WORLD,
)
# verify the weights are initialized differently on all ranks
for other_rank in range(self.world_size):
if self.rank != other_rank:
self.assertNotEqual(
weight_local,
weight_gather[other_rank : other_rank + 1, :],
)
@with_comms
@skip_unless_torch_gpu
def test_fsdp_tp_model_meta_init(self):
# initialize the 2-d device mesh
global_mesh = init_device_mesh(
self.device_type,
mesh_shape=(self.world_size // 2, 2),
mesh_dim_names=("dp", "tp"),
)
dp_mesh, tp_mesh = global_mesh["dp"], global_mesh["tp"]
# model meta init
with torch.device("meta"):
model = torch.nn.Linear(self.world_size, self.world_size, bias=False)
self.assertEqual(model.weight.device, torch.device("meta"))
parallelize_module(model, tp_mesh, ColwiseParallel())
if random._rng_tracker is not None:
random._rng_tracker.distribute_region_enabled = True
fully_shard(model, mesh=dp_mesh)
self.assertEqual(model.weight.device, torch.device("meta"))
# actual initialization
device = torch.device("cuda", torch.cuda.current_device())
model.to_empty(device=device)
model.reset_parameters()
self.assertTrue(
random._rng_tracker is not None
and isinstance(random._rng_tracker, OffsetBasedRNGTracker)
)
self.assertEqual(model.weight.device, device)
assert isinstance(model.weight, DTensor)
# gather all the shards to compare initialization results
WORLD = torch.distributed.group.WORLD
assert WORLD is not None
weight_local = model.weight.to_local()
weight_gather = funcol.all_gather_tensor(
weight_local,
gather_dim=0,
group=WORLD,
)
# verify the weights are initialized differently on all ranks
for other_rank in range(self.world_size):
if self.rank != other_rank:
self.assertNotEqual(
weight_local,
weight_gather[other_rank : other_rank + 1, :],
)
@with_comms
@skip_unless_torch_gpu
def test_deterministic_dropout_1d(self):
# test suite sets each rank's seed to the same value but in actual
# execution the default random seed will be different (a random value).
# The DTensor random ops will use the same random seed even though the
# torch random generator keeps different seeds on ranks.
torch.cuda.manual_seed(self.rank)
# TODO: add test before/after enabling distribute region
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
size = [4, 4]
dtensor = distribute_tensor(
torch.empty(*size, device="cuda"), device_mesh, [Shard(1)]
)
# a random op call shifts the offset
dtensor.uniform_(0, 1)
# the dtensor is now replicate on all ranks
dtensor = dtensor.redistribute(device_mesh, [Replicate()])
dropout = torch.nn.Dropout(p=0.2)
dtensor = dropout(dtensor)
# allgather the local tensors
local_tensor = funcol.all_gather_tensor(
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
)
# compare with local tensors from other ranks
self_slice = slice(4 * self.rank, 4 * self.rank + 4)
for other_rank in range(self.world_size):
if self.rank != other_rank:
# other rank should have an identical local tensor
other_slice = slice(4 * other_rank, 4 * other_rank + 4)
self.assertEqual(
local_tensor[self_slice, :],
local_tensor[other_slice, :],
)
@with_comms
@skip_unless_torch_gpu
def test_deterministic_rand_1d(self):
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
size = [4, 4 * self.world_size]
for fn in [
torch.distributed._tensor.rand,
torch.distributed._tensor.randn,
]:
dtensor = fn(size, device_mesh=device_mesh, placements=[Shard(1)])
local_tensor = funcol.all_gather_tensor(
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
)
# compare with local tensors from other ranks
self_slice = slice(4 * self.rank, 4 * self.rank + 4)
for other_rank in range(self.world_size):
if self.rank != other_rank:
# other rank should have an identical local tensor
other_slice = slice(4 * other_rank, 4 * other_rank + 4)
self.assertNotEqual(
local_tensor[self_slice, :],
local_tensor[other_slice, :],
)
torch.cuda.manual_seed(self.rank)
dtensor = fn(size, device_mesh=device_mesh, placements=[Replicate()])
local_tensor = funcol.all_gather_tensor(
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
)
# compare with local tensors from other ranks
self_slice = slice(4 * self.rank, 4 * self.rank + 4)
for other_rank in range(self.world_size):
if self.rank != other_rank:
# other rank should have an identical local tensor
other_slice = slice(4 * other_rank, 4 * other_rank + 4)
self.assertEqual(
local_tensor[self_slice, :],
local_tensor[other_slice, :],
)
@with_comms
@skip_if_lt_x_gpu(4)
def test_deterministic_uniform_2d(self):
mesh = torch.arange(self.world_size).reshape(2, 2)
device_mesh = DeviceMesh(self.device_type, mesh)
dtensor = distribute_tensor(
torch.empty(
*[self.world_size for _ in mesh.size()], device=self.device_type
),
device_mesh,
[Replicate(), Replicate()],
)
placements_list = [ # this list of placements should be enough to cover
[Shard(0), Shard(1)],
[Shard(1), Shard(0)],
[Shard(0), Replicate()],
[Replicate(), Shard(0)],
[Shard(1), Replicate()],
[Replicate(), Shard(1)],
[Replicate(), Replicate()],
]
shard_index_list = [
{0: 0, 1: 1, 2: 2, 3: 3},
{0: 0, 1: 2, 2: 1, 3: 3},
{0: 0, 1: 0, 2: 1, 3: 1},
{0: 0, 1: 1, 2: 0, 3: 1},
{0: 0, 1: 0, 2: 1, 3: 1},
{0: 0, 1: 1, 2: 0, 3: 1},
{0: 0, 1: 0, 2: 0, 3: 0},
]
coordinate = device_mesh.get_coordinate()
assert coordinate is not None
for placements, shard_index in zip(placements_list, shard_index_list):
dtensor = dtensor.redistribute(device_mesh, placements)
# check shard information is correct
shard_coord = [
coordinate[mesh_dim] if mesh_dim >= 0 else 0
for mesh_dim in dtensor._spec.dim_map
]
shard_size = [
device_mesh.size(mesh_dim) if mesh_dim >= 0 else 1
for mesh_dim in dtensor._spec.dim_map
]
shard_linear_idx = random._rng_tracker._calc_shard_linear_idx(
shard_coord, shard_size
)
self.assertEqual(shard_linear_idx, shard_index[self.rank])
# compute local size and offset
_, local_shard_offset = compute_local_shape_and_global_offset(
dtensor.shape, device_mesh, placements
)
# get the local shard size and local shard offset for each shard
# local_shard_list_on_dim[i] has the list of all shards on that dim
# as a tuple (local_shard_offset, local_shard_size)
dtensor_shape = dtensor.shape
local_shard_list_on_dim = [[(0, l)] for l in dtensor_shape]
for idx, placement in enumerate(placements):
if isinstance(placement, Shard):
mesh_dim_size = device_mesh.size(idx)
shard_dim = placement.dim
local_shard_list_on_dim[shard_dim] = []
for shard_idx_on_dim in range(mesh_dim_size):
shard_size, shard_offset = placement._local_shard_size_on_dim(
dtensor_shape[shard_dim],
mesh_dim_size,
shard_idx_on_dim,
return_offset=True,
)
local_shard_list_on_dim[shard_dim].append(
(shard_offset, shard_size)
)
local_shard_comb = itertools.product(*local_shard_list_on_dim)
# random op call
dtensor.uniform_(0, 1)
# the local shard
local_tensor = dtensor.to_local()
# allgather the local tensors
full_tensor = dtensor.full_tensor()
# compare local tensor with each other shard
for other_local_shard in local_shard_comb:
other_local_shard_offset, _ = zip(*other_local_shard)
slice_idx = [
slice(offset, offset + size) for offset, size in other_local_shard
]
if local_shard_offset == other_local_shard_offset:
self.assertEqual(full_tensor[slice_idx], local_tensor)
else:
self.assertNotEqual(full_tensor[slice_idx], local_tensor)
@with_comms
@skip_if_lt_x_gpu(4)
def test_meta_tensor_init(self):
# test suite sets each rank's seed to the same value but in actual
# execution the default random seed will be different (a random value).
# The DTensor random ops will use the same random seed even though the
# torch random generator keeps different seeds on ranks. This ensures
# that Replicate DTensor will have the same initialized results
# across ranks.
torch.cuda.manual_seed(self.rank)
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
size = [1024, 2048]
meta_dtensor = distribute_tensor(
torch.empty(*size, device="meta"), device_mesh, [Replicate()]
)
self.assertTrue(meta_dtensor.is_meta)
dtensor = torch.empty_like(meta_dtensor, device=self.device_type)
# disable the distribute region for RNG
random._rng_tracker.distribute_region_enabled = False
dtensor.uniform_()
# allgather the local tensors
local_tensor = funcol.all_gather_tensor(
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
)
# compare with local tensors from other ranks
self_slice = slice(1024 * self.rank, 1024 * self.rank + 1024)
for other_rank in range(self.world_size):
# the RNG result on each rank differs even they're supposed
# to be replicated
if self.rank != other_rank:
other_slice = slice(1024 * other_rank, 1024 * other_rank + 1024)
self.assertNotEqual(
local_tensor[self_slice, :], local_tensor[other_slice, :]
)
# enable the distribute region for RNG
random._rng_tracker.distribute_region_enabled = True
self.assertTrue(meta_dtensor.is_meta)
dtensor = torch.empty_like(meta_dtensor, device=self.device_type)
dtensor.uniform_()
# allgather the local tensors
local_tensor = funcol.all_gather_tensor(
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
)
# compare with local tensors from other ranks
for other_rank in range(self.world_size):
# the RNG result on each rank are the same because they're replicated
if self.rank != other_rank:
# other rank should have an identical local tensor
other_slice = slice(1024 * other_rank, 1024 * other_rank + 1024)
self.assertEqual(
local_tensor[self_slice, :], local_tensor[other_slice, :]
)
if __name__ == "__main__":
run_tests()
|