File: test_redistribute.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (542 lines) | stat: -rw-r--r-- 23,021 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]

import itertools

import torch
from torch.distributed._tensor import DeviceMesh, distribute_tensor, DTensor
from torch.distributed._tensor.placement_types import Partial, Replicate, Shard
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.tensor._collective_utils import shard_dim_alltoall
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
    DTensorTestBase,
    with_comms,
)


funcol = torch.ops.c10d_functional


class RedistributeTest(DTensorTestBase):
    @property
    def world_size(self):
        return 4

    @with_comms
    def test_shard_to_replicate_forward_backward(self):
        # 1) test shard -> replicate forward
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        replica_spec = [Replicate()]

        input_sizes_and_shard_dim = [
            ((self.world_size * 3, 3), 0),
            ((self.world_size * 3 + 1, 3), 0),
            ((self.world_size * 3 + 2, 3), 0),
            ((3, self.world_size * 3), 1),
            ((3, self.world_size * 3 + 1), 1),
            ((3, self.world_size * 3 + 2), 1),
        ]

        comm_mode = CommDebugMode()
        for input_size, shard_dim in input_sizes_and_shard_dim:
            shard_spec = [Shard(shard_dim)]
            expected_tensor = torch.randn(
                input_size, device=self.device_type, requires_grad=True
            )
            dtensor = distribute_tensor(expected_tensor, device_mesh, shard_spec)
            with comm_mode:
                reshard_dtensor = dtensor.redistribute(device_mesh, replica_spec)
            self.assertEqual(reshard_dtensor.size(), torch.Size(input_size))
            self.assertEqual(expected_tensor, reshard_dtensor.to_local())
            self.assertEqual(
                comm_mode.get_comm_counts()[funcol.all_gather_into_tensor], 1
            )

            # 2) test shard -> replicate backward:
            # should give gradient as shard
            grad_output = torch.ones_like(reshard_dtensor)
            with comm_mode:
                reshard_dtensor.backward(grad_output)
            grad_input = dtensor.grad
            self.assertEqual(grad_input.placements, shard_spec)
            self.assertEqual(
                grad_input.to_local(), torch.ones(dtensor.to_local().size())
            )
            self.assertEqual(comm_mode.get_total_counts(), 0)

    @with_comms
    def test_replicate_to_replicate_forward_backward(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        replica_spec = [Replicate()]
        local_tensor = torch.randn(12, 3, device=self.device_type, requires_grad=True)

        comm_mode = CommDebugMode()

        # 1) test replicate -> replicate forward
        replica_tensor = distribute_tensor(local_tensor, device_mesh, replica_spec)
        with comm_mode:
            reshard_replica_tensor = replica_tensor.redistribute(
                device_mesh, replica_spec
            )
        self.assertEqual(replica_tensor.size(), local_tensor.size())
        self.assertEqual(replica_tensor, reshard_replica_tensor)
        self.assertEqual(comm_mode.get_total_counts(), 0)

        # 2) test replicate -> replicate backward:
        # should give gradient as replicate
        grad_output = torch.ones_like(reshard_replica_tensor)
        with comm_mode:
            reshard_replica_tensor.backward(grad_output)
        grad_input = replica_tensor.grad
        self.assertEqual(grad_input.placements, replica_spec)
        self.assertEqual(grad_input.to_local(), torch.ones(12, 3))
        self.assertEqual(comm_mode.get_total_counts(), 0)

    @with_comms
    def test_replicate_to_local_partial_grad(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        replica_spec = [Replicate()]
        local_tensor = torch.randn(12, 3, device=self.device_type, requires_grad=True)

        replica_tensor = distribute_tensor(local_tensor, device_mesh, replica_spec)

        comm_mode = CommDebugMode()

        with comm_mode:
            out = replica_tensor.redistribute(placements=[Replicate()]).to_local(
                grad_placements=[Partial()]
            )
            out.backward(torch.ones_like(out))

        self.assertEqual(comm_mode.get_total_counts(), 1)
        self.assertEqual(comm_mode.get_comm_counts()[funcol.all_reduce], 1)

    @with_comms
    def test_replicate_to_shard_forward_backward(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        replica_spec = [Replicate()]

        input_sizes_and_shard_dim = [
            ((self.world_size * 3, 3), 0),
            ((self.world_size * 3 + 1, 3), 0),
            ((self.world_size * 3 + 2, 3), 0),
            ((3, self.world_size * 3), 1),
            ((3, self.world_size * 3 + 1), 1),
            ((3, self.world_size * 3 + 2), 1),
        ]

        comm_mode = CommDebugMode()
        for input_size, shard_dim in input_sizes_and_shard_dim:
            shard_spec = [Shard(shard_dim)]
            # 1) test replicate -> shard forward
            local_replica = torch.randn(
                input_size, device=self.device_type, requires_grad=True
            )
            splitted_list = list(
                torch.chunk(local_replica, self.world_size, dim=shard_dim)
            )

            # make local tensor as the element of the corresponding chunked list
            local_tensor = splitted_list[self.rank]
            replica_tensor = distribute_tensor(local_replica, device_mesh, replica_spec)
            with comm_mode:
                reshard_tensor = replica_tensor.redistribute(device_mesh, shard_spec)
            self.assertEqual(reshard_tensor.size(), replica_tensor.size())
            self.assertEqual(reshard_tensor.placements, shard_spec)
            self.assertEqual(reshard_tensor.to_local(), local_tensor)
            self.assertEqual(comm_mode.get_total_counts(), 0)

            # 2) test replicate -> shard backward:
            # should give gradient as replicate
            grad_output = torch.ones_like(reshard_tensor)
            with comm_mode:
                reshard_tensor.backward(grad_output)
            grad_input = replica_tensor.grad
            self.assertEqual(grad_input.placements, replica_spec)
            self.assertEqual(grad_input.to_local(), torch.ones(input_size))
            self.assertEqual(comm_mode.get_total_counts(), 1)
            self.assertEqual(
                comm_mode.get_comm_counts()[funcol.all_gather_into_tensor], 1
            )

    @with_comms
    def test_partial_to_replicate_forward_backward(self):
        # Although we don't allow user to reshard to produce a partial
        # placement (i.e. user can't reshard to partial), we do allow
        # replicate to partial internally, and also partial to replicate
        # backward should work as expected
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        partial_local = torch.ones(12, 3, device=self.device_type, requires_grad=True)
        partial_spec = [Partial()]
        replica_spec = [Replicate()]

        comm_mode = CommDebugMode()
        # test partial -> replicate, which trigger all_reduce
        partial_tensor = DTensor.from_local(partial_local, device_mesh, partial_spec)
        with comm_mode:
            global_partial_tensor = partial_tensor.redistribute(
                device_mesh, replica_spec
            )

        self.assertEqual(partial_tensor.size(), partial_local.size())
        self.assertEqual(
            partial_local * self.world_size, global_partial_tensor.to_local()
        )
        self.assertEqual(comm_mode.get_comm_counts()[funcol.all_reduce], 1)

        # test backward to have replicate grad on partial
        # for from_local backward, we want the replicate() -> partial() to be
        # pass through.
        with comm_mode:
            global_partial_tensor.backward(torch.ones_like(global_partial_tensor))
        self.assertIsNotNone(partial_local.grad)
        self.assertEqual(partial_local.grad.size(), partial_local.size())
        self.assertEqual(partial_local.grad, torch.ones_like(partial_local))
        self.assertEqual(comm_mode.get_total_counts(), 0)

    @with_comms
    def test_replicate_to_partial(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        local_tensor = torch.randn(12, 3, device=self.device_type, requires_grad=True)
        partial_spec = Partial()
        replica_spec = Replicate()
        # 1) test replicate -> partial forward
        replica_tensor = distribute_tensor(local_tensor, device_mesh, [replica_spec])
        with self.assertRaisesRegex(RuntimeError, "Can not redistribute to Partial"):
            partial_tensor = replica_tensor.redistribute(device_mesh, [partial_spec])

        from torch.distributed.tensor._redistribute import Redistribute

        comm_mode = CommDebugMode()

        with comm_mode:
            partial_tensor = Redistribute.apply(
                replica_tensor, device_mesh, [partial_spec]
            )
        self.assertEqual(partial_tensor.size(), local_tensor.size())
        # test it successfully zero out the contents on other ranks
        self.assertEqual(
            replica_tensor.to_local() / self.world_size, partial_tensor.to_local()
        )
        self.assertEqual(comm_mode.get_total_counts(), 0)

        # replicate to partial on sub groups
        local_tensor = torch.randn(12, 3, device=self.device_type)
        device_mesh = DeviceMesh(
            self.device_type,
            torch.arange(self.world_size).reshape(self.world_size // 2, 2),
        )
        # 1) test replicate -> partial on 2d-mesh subgroups
        replica_tensor = distribute_tensor(
            local_tensor, device_mesh, [replica_spec, replica_spec]
        )
        with comm_mode:
            partial_tensor = Redistribute.apply(
                replica_tensor, device_mesh, [partial_spec, partial_spec]
            )
        self.assertEqual(partial_tensor.size(), local_tensor.size())

        self.assertEqual(
            replica_tensor.to_local() / self.world_size,
            partial_tensor.to_local(),
        )
        self.assertEqual(comm_mode.get_total_counts(), 0)

    @with_comms
    def test_partial_to_shard(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        partial_spec = [Partial()]
        my_rank = device_mesh.get_rank()

        input_sizes_and_shard_dim = [
            ((self.world_size * 3, 3), 0),
            ((self.world_size * 3 + 1, 3), 0),
            ((self.world_size * 3 + 2, 3), 0),
            ((3, self.world_size * 3), 1),
            ((3, self.world_size * 3 + 1), 1),
            ((3, self.world_size * 3 + 2), 1),
        ]

        comm_mode = CommDebugMode()

        for input_size, shard_dim in input_sizes_and_shard_dim:
            shard_spec = [Shard(shard_dim)]

            partial_local = torch.ones(input_size, device=self.device_type)
            partial_tensor = DTensor.from_local(
                partial_local, device_mesh, partial_spec, run_check=False
            )

            full_chunk_size = (
                input_size[shard_dim] + self.world_size - 1
            ) // self.world_size
            chunk_sizes = [
                max(
                    min(input_size[shard_dim], full_chunk_size * (idx + 1))
                    - full_chunk_size * idx,
                    0,
                )
                for idx in range(self.world_size)
            ]

            local_shape = list(input_size)
            local_shape[shard_dim] = chunk_sizes[my_rank]

            # test partial to shard, trigger reduce_scatter
            with comm_mode:
                scatter_shard_tensor = partial_tensor.redistribute(
                    device_mesh, shard_spec
                )
            self.assertEqual(scatter_shard_tensor.size(), partial_tensor.size())
            self.assertEqual(scatter_shard_tensor.placements, shard_spec)
            self.assertEqual(
                scatter_shard_tensor.to_local(),
                torch.ones(local_shape) * self.world_size,
            )
            self.assertEqual(
                comm_mode.get_comm_counts()[funcol.reduce_scatter_tensor], 1
            )

    @with_comms
    def test_redistribute_negative_shard_dim(self):
        device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
        local_tensor = torch.randn(12, 3, device=self.device_type, requires_grad=True)
        shard_spec = [Shard(1)]
        shard_minus_spec = [Shard(-1)]

        shard_tensor = distribute_tensor(local_tensor, device_mesh, shard_spec)
        self.assertEqual(shard_tensor.placements[0].dim, 1)
        reshard_tensor = shard_tensor.redistribute(device_mesh, shard_minus_spec)
        self.assertEqual(shard_tensor.placements[0].dim, 1)

    @with_comms
    def test_redistribute_uneven_sharding(self):
        mesh = DeviceMesh(self.device_type, torch.arange(self.world_size).reshape(2, 2))
        data_to_test = [
            # uneven on last mesh dim
            torch.randn((10, 5), device=self.device_type),
            # uneven on both mesh dims
            torch.randn((9, 5), device=self.device_type),
            # smaller than mesh dim shape
            torch.randn((3, 5), device=self.device_type),
            torch.randn((1, 3), device=self.device_type),
        ]

        sharding_to_tests = [
            [Shard(0), Shard(0)],
            [Shard(0), Shard(1)],
        ]

        for input_tensor in data_to_test:
            for placements in sharding_to_tests:
                dt = distribute_tensor(input_tensor, mesh, placements)
                dt_full_tensor = dt.full_tensor()
                self.assertEqual(dt_full_tensor, input_tensor)

    @with_comms
    def test_redistribute_shard_dim_change(self):
        # test 1d device mesh
        mesh_1d = DeviceMesh(self.device_type, torch.arange(self.world_size))
        data_to_test = [
            # evenly sharded case
            torch.randn((8, 8), device=self.device_type),
            # 3d or more dims
            torch.randn((8, 8, 8), device=self.device_type),
            # uneven case 1
            torch.randn((8, 5), device=self.device_type),
            # uneven case 2
            torch.randn((5, 8), device=self.device_type),
            # uneven case 3
            torch.randn((5, 5), device=self.device_type),
        ]

        sharding_src_dst_pairs = [([Shard(0)], [Shard(1)]), ([Shard(1)], [Shard(0)])]

        comm_mode = CommDebugMode()

        for input_data in data_to_test:
            for src, dst in sharding_src_dst_pairs:
                expected_dt = distribute_tensor(input_data.clone(), mesh_1d, dst)
                sharded_dt = distribute_tensor(input_data, mesh_1d, src)
                with comm_mode:
                    out_dt = sharded_dt.redistribute(mesh_1d, dst)
                self.assertEqual(out_dt.placements, expected_dt.placements)
                local_out_dt = out_dt.to_local()
                local_expected_dt = expected_dt.to_local()
                self.assertEqual(out_dt.to_local(), expected_dt.to_local())
                if self.device_type == "cuda":
                    self.assertEqual(
                        comm_mode.get_comm_counts()[
                            torch.ops._dtensor.shard_dim_alltoall
                        ],
                        1,
                    )
                else:
                    self.assertEqual(
                        comm_mode.get_comm_counts()[funcol.all_gather_into_tensor],
                        1,
                    )

        # test 2d device mesh
        mesh_2d = DeviceMesh(
            self.device_type, torch.arange(self.world_size).reshape(2, 2)
        )
        data_to_test_2d = [
            # evenly sharded case
            torch.randn((8, 8), device=self.device_type),
            # 3d or more dims
            torch.randn((8, 8, 8), device=self.device_type),
            # uneven case 1
            torch.randn((8, 5), device=self.device_type),
            # uneven case 2
            torch.randn((5, 8), device=self.device_type),
            # uneven case 3
            torch.randn((5, 5), device=self.device_type),
        ]
        sharding_src_dst_pairs_2d = [
            ([Shard(0), Shard(1)], [Shard(0), Shard(0)]),
            ([Shard(0), Shard(1)], [Shard(1), Shard(0)]),
            ([Shard(0), Shard(0)], [Shard(1), Shard(1)]),
        ]
        comm_counts_2d = [
            1,  # 1: S1 -> S0
            2,  # 1: S1 -> R, 0: S0 -> S1, 1: R -> S0
            2,  # 1: S0 -> R, 0: S0 -> S1, 1: R -> S1
        ]

        for input_data in data_to_test_2d:
            if input_data.ndim > 2:
                sharding_spec_combs = sharding_src_dst_pairs_2d + [
                    ([Shard(0), Shard(2)], [Shard(1), Shard(0)]),
                    ([Shard(1), Shard(1)], [Shard(1), Shard(2)]),
                ]
                comm_counts_2d = comm_counts_2d + [
                    2,  # 1. S2 -> R, 0: S0 -> S1, 1: R -> S0
                    1,  # 1: S1 -> S2
                ]
            else:
                sharding_spec_combs = sharding_src_dst_pairs_2d

            for idx, (src, dst) in enumerate(sharding_spec_combs):
                expected_dt = distribute_tensor(input_data.clone(), mesh_2d, dst)
                sharded_dt = distribute_tensor(input_data, mesh_2d, src)
                with comm_mode:
                    out_dt = sharded_dt.redistribute(mesh_2d, dst)

                self.assertEqual(out_dt.placements, expected_dt.placements)
                self.assertEqual(comm_mode.get_total_counts(), comm_counts_2d[idx])

                local_out_dt = out_dt.to_local()
                local_expected_dt = expected_dt.to_local()
                self.assertEqual(local_out_dt, local_expected_dt)

    @with_comms
    def test_shard_dim_alltoall(self):
        # init 2d mesh here so we can test when group_rank != global_rank
        mesh = init_device_mesh(self.device_type, (2, 2))
        tensor = torch.randn(12, self.world_size, device=self.device_type)
        new_tensor = shard_dim_alltoall(tensor, 0, 1, mesh, 0)

        meta_tensor = torch.randn(12, self.world_size, device="meta")
        new_meta_tensor = shard_dim_alltoall(meta_tensor, 0, 1, mesh, 0)

        self.assertEqual(new_tensor.shape, new_meta_tensor.shape)
        self.assertEqual(new_tensor.stride(), new_meta_tensor.stride())


class MultiDimRedistributeTest(DTensorTestBase):
    @property
    def world_size(self) -> int:
        return 8

    @with_comms
    def test_multi_dim_mesh(self):
        devices = torch.arange(self.world_size)
        for mesh_shape in [devices, devices.view(4, 2), devices.view(2, 2, 2)]:
            mesh_shape = torch.arange(self.world_size).view(-1, 2)
            device_mesh = DeviceMesh(self.device_type, mesh_shape)
            tensor_shape = (16, 24)

            if torch.distributed.get_rank() == 0:
                full_tensor = torch.randn(*tensor_shape)
            else:
                # these should be entirely ignored
                # because distribute_tensor is expected to override shards in ranks != 0
                full_tensor = torch.ones(*tensor_shape)

            possibilities = [Replicate()] + [Shard(i) for i in range(full_tensor.ndim)]
            all_outputs = list(itertools.product(*(mesh_shape.ndim * [possibilities])))
            all_inputs = list(
                itertools.product(*(mesh_shape.ndim * [possibilities + [Partial()]]))
            )

            for inputs in all_inputs:
                # if partial, temporarily make it Replicated, then replace replicated with partial afterwards
                repl_inputs = [Replicate() if s.is_partial() else s for s in inputs]
                dt = distribute_tensor(full_tensor, device_mesh, repl_inputs)

                if repl_inputs != inputs:
                    # create a new DTensor reinterpreting some of the replicated entires as "Partial"
                    dt = DTensor.from_local(
                        dt.to_local(), device_mesh, inputs, run_check=False
                    )

                for outputs in all_outputs:
                    # redistribute on target outputs
                    dt2 = dt.redistribute(device_mesh, outputs)

                    # replicate and then get first shard
                    local_full = dt2.full_tensor()

                    if torch.distributed.get_rank() == 0:
                        self.assertEqual(local_full.shape, full_tensor.shape)

                        num_sums = 1
                        for idx, input in enumerate(inputs):
                            if input.is_partial():
                                num_sums *= mesh_shape.size(idx)
                        expected = num_sums * full_tensor
                        self.assertEqual(local_full, expected)

    @with_comms
    def test_redistribute_shard_dim_multi_dim_mesh(self):
        mesh = init_device_mesh(self.device_type, (2, 2, 2))
        input_data = torch.randn((8, 8, 8), device=self.device_type)

        sharding_src_dst_pairs_3d = [
            ([Shard(0), Shard(0), Shard(0)], [Shard(1), Shard(1), Shard(1)]),
            ([Shard(0), Shard(1), Shard(0)], [Shard(1), Shard(0), Shard(0)]),
            ([Shard(0), Shard(1), Shard(2)], [Shard(2), Shard(1), Shard(0)]),
            ([Shard(1), Shard(0), Shard(0)], [Replicate(), Shard(0), Shard(0)]),
            ([Shard(1), Replicate(), Shard(0)], [Replicate(), Shard(0), Shard(0)]),
            ([Shard(0), Shard(0), Shard(1)], [Shard(0), Shard(1), Shard(2)]),
        ]
        comm_counts_3d = [
            3,  # 2: S0 - R, 1: S1 -> R, 0: S0 -> S1
            3,  # 2: S0 -> R, 1: S1 -> R, 0: S0 -> S1, 1: R -> S0, 2: R -> S0
            2,  # 2: S2 -> R, 0: S1 -> S2
            1,  # 0: S1 -> R
            2,  # 2: S0 -> R, 1: R -> S0, 2: R -> S0, 0: S1 -> R
            2,  # 2: S1 -> S2, 1: S0 -> S1
        ]

        comm_mode = CommDebugMode()
        for idx, (src_placement, dst_placement) in enumerate(sharding_src_dst_pairs_3d):
            expected_dt = distribute_tensor(input_data.clone(), mesh, dst_placement)
            sharded_dt = distribute_tensor(input_data, mesh, src_placement)

            with comm_mode:
                out_dt = sharded_dt.redistribute(mesh, dst_placement)

            self.assertEqual(out_dt.placements, expected_dt.placements)
            self.assertEqual(comm_mode.get_total_counts(), comm_counts_3d[idx])

            local_out_dt = out_dt.to_local()
            local_expected_dt = expected_dt.to_local()
            self.assertEqual(local_out_dt, local_expected_dt)


if __name__ == "__main__":
    run_tests()