File: test_utils.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (529 lines) | stat: -rw-r--r-- 21,887 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# Owner(s): ["oncall: distributed"]

import itertools

import torch
from torch.distributed._tensor import distribute_tensor, DTensor
from torch.distributed._tensor._utils import compute_local_shape_and_global_offset
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.tensor._dtensor_spec import DTensorSpec, TensorMeta
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.placement_types import _StridedShard, Replicate, Shard
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
    DTensorTestBase,
    with_comms,
)


c10d_functional = torch.ops.c10d_functional


class UtilTest(DTensorTestBase):
    @property
    def world_size(self):
        return 8

    def _compute_start_end_offsets(self, global_offset, local_size, n_dim):
        offset = []
        for i in range(n_dim):
            offset.append(((global_offset[i]), (global_offset[i] + local_size[i])))
        return offset

    @with_comms
    def test_compute_local_shape_and_global_offset_1D(self):
        one_d_placements = [[Shard(0)], [Replicate()]]

        device_mesh = init_device_mesh(self.device_type, (self.world_size,))
        for placements in one_d_placements:
            # When the placements is [Shard(0)], we test for three different scenarios:
            # 1) sharding resulting in empty shards on all or some of the ranks
            # 2) sharding resulting in shards of different size across different ranks
            # 3) sharding resulting in non-empty shards of same size across all ranks
            for size in range(self.world_size * 2 + 1):
                global_tensor = torch.arange(size)
                global_shape = global_tensor.size()

                dtensor = distribute_tensor(global_tensor, device_mesh, placements)
                local_size, global_offset = compute_local_shape_and_global_offset(
                    global_shape, device_mesh, placements
                )
                dim = self._compute_start_end_offsets(global_offset, local_size, 1)
                dim0_start, dim0_end = dim[0][0], dim[0][1]

                # Check the local tensor of dtensor is exactly the same
                # if we slice the global_tensor with local_size and global_offset
                self.assertEqual(
                    dtensor.to_local(),
                    global_tensor[dim0_start:dim0_end],
                )

    @with_comms
    def test_compute_local_shape_and_global_offset_2D(self):
        two_d_placements_options = [Shard(0), Shard(1), Replicate()]
        # Generating 6 two-d placements combinations
        two_d_placements = list(
            itertools.combinations_with_replacement(two_d_placements_options, 2)
        )

        # mesh: 2 * 4
        device_mesh = init_device_mesh(self.device_type, (2, 4))
        for placements in two_d_placements:
            for dim_0_size in range(1, 9):
                nelem = 64 // dim_0_size * dim_0_size
                global_tensor = torch.arange(nelem).view(dim_0_size, -1)
                global_shape = global_tensor.size()

                dtensor = distribute_tensor(global_tensor, device_mesh, placements)
                local_size, global_offset = compute_local_shape_and_global_offset(
                    global_shape, device_mesh, placements
                )

                dim = self._compute_start_end_offsets(global_offset, local_size, 2)
                dim0_start, dim0_end = dim[0][0], dim[0][1]
                dim1_start, dim1_end = dim[1][0], dim[1][1]

                # Check the local tensor of dtensor is exactly the same
                # if we slice the global_tensor with local_size and global_offset
                self.assertEqual(
                    dtensor.to_local(),
                    global_tensor[dim0_start:dim0_end, dim1_start:dim1_end],
                )

    @with_comms
    def test_fsdp_tp_meta_compute(self):
        # FSDP + TP sharding
        tp_size = 2
        dp_size = self.world_size // tp_size
        global_mesh = init_device_mesh(
            self.device_type, (dp_size, tp_size), mesh_dim_names=("dp", "tp")
        )
        # local shard shape is [2, 2]
        global_tensor_shape = torch.Size([2 * self.world_size, 2])
        placements = [_StridedShard(0, split_factor=tp_size), Shard(0)]

        local_shape, global_offset = compute_local_shape_and_global_offset(
            global_tensor_shape, global_mesh, placements
        )
        assert global_mesh.get_coordinate is not None
        dp_rank = global_mesh.get_local_rank("dp")
        tp_rank = global_mesh.get_local_rank("tp")
        shard_idx_on_dim_0 = tp_rank * dp_size + dp_rank
        expected_local_shape = (2, 2)
        expected_global_offset = (shard_idx_on_dim_0 * 2, 0)
        self.assertEqual(local_shape, expected_local_shape)
        self.assertEqual(global_offset, expected_global_offset)

    @with_comms
    def test_hsdp_tp_meta_compute(self):
        # HSDP + TP sharding
        tp_size = 2
        dp_shard_size = 2
        dp_replic_size = self.world_size // (dp_shard_size * tp_size)
        global_mesh = init_device_mesh(
            self.device_type,
            (dp_replic_size, dp_shard_size, tp_size),
            mesh_dim_names=("dp_replic", "dp_shard", "tp"),
        )
        # local shard shape is [2, 2]
        global_tensor_shape = torch.Size([2 * dp_shard_size * tp_size, 2])
        placements = [Replicate(), _StridedShard(0, split_factor=tp_size), Shard(0)]

        local_shape, global_offset = compute_local_shape_and_global_offset(
            global_tensor_shape, global_mesh, placements
        )
        assert global_mesh.get_coordinate is not None
        dp_replic_rank = global_mesh.get_local_rank("dp_replic")
        dp_shard_rank = global_mesh.get_local_rank("dp_shard")
        tp_rank = global_mesh.get_local_rank("tp")
        shard_idx_on_dim_0 = tp_rank * dp_shard_size + dp_shard_rank
        expected_local_shape = (2, 2)
        expected_global_offset = (shard_idx_on_dim_0 * 2, 0)
        self.assertEqual(local_shape, expected_local_shape)
        self.assertEqual(global_offset, expected_global_offset)

    # TODO: remove this test once we support general meta compute on strided sharding
    @with_comms
    def test_strided_sharding_assumption_in_meta_compute(self):
        # current ``compute_local_shape_and_global_offset`` does not allow Shard(i)
        # placement to appear after the strided sharding part has ended. This test
        # check that ``compute_local_shape_and_global_offset`` does not allow placements
        # that violate the assumption and does not forbid the allowed ones.

        # Test 0: 2-D mesh
        mesh_size_0 = 2
        mesh_size_1 = self.world_size // mesh_size_0
        global_mesh = init_device_mesh(
            self.device_type,
            (mesh_size_0, mesh_size_1),
            mesh_dim_names=("mesh-0", "mesh-1"),
        )
        global_tensor_shape = torch.Size([2 * self.world_size, 2 * self.world_size])

        for shard_dim in [0, 1]:
            placements = [
                _StridedShard(shard_dim, split_factor=mesh_size_1),
                Shard(shard_dim),
            ]
            _, _ = compute_local_shape_and_global_offset(
                global_tensor_shape, global_mesh, placements
            )

        # Test 1: 3-D mesh
        mesh_size_0 = 2
        mesh_size_1 = 2
        mesh_size_2 = self.world_size // (mesh_size_0 * mesh_size_1)
        global_mesh = init_device_mesh(
            self.device_type,
            (mesh_size_0, mesh_size_1, mesh_size_2),
            mesh_dim_names=("mesh-0", "mesh-1", "mesh-2"),
        )

        # legal placements: Shard() appear after the strided part but it's on another
        # tensor dimension.
        placements = [
            _StridedShard(0, split_factor=mesh_size_1),
            Shard(0),
            Shard(1),
        ]
        _, _ = compute_local_shape_and_global_offset(
            global_tensor_shape, global_mesh, placements
        )

        # illegal placements: Shard() appear after the strided part and it's on the
        # same tensor dimension.
        placements = [
            _StridedShard(0, split_factor=mesh_size_1),
            Shard(0),
            Shard(0),
        ]
        with self.assertRaisesRegex(NotImplementedError, "the strided part has ended"):
            _, _ = compute_local_shape_and_global_offset(
                global_tensor_shape, global_mesh, placements
            )

        # Test 2: 4-D mesh
        mesh_size_0 = 1
        mesh_size_1 = 2
        mesh_size_2 = 2
        mesh_size_3 = self.world_size // (mesh_size_0 * mesh_size_1 * mesh_size_2)
        global_mesh = init_device_mesh(
            self.device_type,
            (mesh_size_0, mesh_size_1, mesh_size_2, mesh_size_3),
            mesh_dim_names=("mesh-0", "mesh-1", "mesh-2", "mesh-3"),
        )
        # legal placements: Shard() appear after the strided part but it's on another
        # tensor dimension.
        placements = [
            _StridedShard(0, split_factor=mesh_size_1),
            _StridedShard(1, split_factor=mesh_size_3),
            Shard(0),
            Shard(1),
        ]
        local_shape, _ = compute_local_shape_and_global_offset(
            global_tensor_shape, global_mesh, placements
        )
        expected_local_shape = (
            2 * mesh_size_1 * mesh_size_3,
            2 * mesh_size_0 * mesh_size_2,
        )
        self.assertEqual(local_shape, expected_local_shape)

        # illegal placements: Shard() appear after the strided part and it's on the
        # same tensor dimension.
        placements = [
            _StridedShard(0, split_factor=mesh_size_1),
            _StridedShard(1, split_factor=mesh_size_3),
            Shard(0),
            Shard(0),
        ]
        with self.assertRaisesRegex(NotImplementedError, "the strided part has ended"):
            _, _ = compute_local_shape_and_global_offset(
                global_tensor_shape, global_mesh, placements
            )


class TestStridedSharding(DTensorTestBase):
    @property
    def world_size(self):
        return 4

    @with_comms
    def test_1d_mesh_strided_sharding(self):
        mesh_1d = init_device_mesh(self.device_type, (self.world_size,))
        # Test 1: 1-d tensor over 1-d mesh
        x = torch.arange(2 * self.world_size, device=self.device_type)
        """
        contiguous sharding: [0, 1 | 2, 3 | 4, 5 | 6, 7]
        """
        shard_placement = _StridedShard(0, split_factor=1)  # same as Shard(0)
        tensor_list, _ = shard_placement._split_tensor(x, self.world_size)
        shard_x = tensor_list[self.rank]
        self.assertEqual(shard_x, x.view(self.world_size, -1)[self.rank])
        # shard_to_replicate
        full_tensor = shard_placement._to_replicate_tensor(
            shard_x,
            mesh_1d,
            mesh_dim=0,
            current_logical_shape=list(x.shape),
        )
        self.assertEqual(full_tensor, x)

        """
        strided sharding: [0, 4 | 1, 5 | 2, 6 | 3, 7]
        """
        shard_placement = _StridedShard(0, split_factor=2)
        tensor_list, _ = shard_placement._split_tensor(x, self.world_size)
        shard_x = tensor_list[self.rank]
        self.assertEqual(
            shard_x, x.view(-1, self.world_size).swapdims(-1, 0)[self.rank]
        )
        # shard_to_replicate
        full_tensor = shard_placement._to_replicate_tensor(
            shard_x,
            mesh_1d,
            mesh_dim=0,
            current_logical_shape=list(x.shape),
        )
        self.assertEqual(full_tensor, x)

    @with_comms
    def test_2d_mesh_strided_sharding(self):
        # Test 2: 1-d tensor over 2-d mesh
        mesh_2d = init_device_mesh(
            self.device_type, (2, self.world_size // 2), mesh_dim_names=("dim0", "dim1")
        )
        mesh_dim0_size = mesh_2d["dim0"].size()
        mesh_dim1_size = mesh_2d["dim1"].size()
        mesh_dim0_local_rank = mesh_2d["dim0"].get_local_rank(mesh_dim=0)
        mesh_dim1_local_rank = mesh_2d["dim1"].get_local_rank(mesh_dim=0)
        x = torch.arange(2 * self.world_size, device=self.device_type)
        """
        contiguous sharding: [
            [ 0, 1 | 2, 3 ],
            [ 4, 5 | 6, 7 ],
        ]
        """
        # shard on mesh dim-0
        shard_placement_dim0 = _StridedShard(0, split_factor=1)  # same as Shard(0)
        tensor_list, _ = shard_placement_dim0._split_tensor(x, mesh_dim0_size)
        expected_shard_dim0 = x.view(mesh_dim0_size, -1)[mesh_dim0_local_rank]
        shard_x = tensor_list[mesh_dim0_local_rank]
        self.assertEqual(shard_x, expected_shard_dim0)

        # shard on mesh dim-1
        shard_placement_dim1 = _StridedShard(0, split_factor=1)  # same as Shard(0)
        tensor_list, _ = shard_placement_dim1._split_tensor(shard_x, mesh_dim1_size)
        expected_shard_dim1 = shard_x.view(mesh_dim1_size, -1)[mesh_dim1_local_rank]
        shard_x = tensor_list[mesh_dim1_local_rank]
        self.assertEqual(shard_x, expected_shard_dim1)

        # shard_to_replicate on mesh dim-1
        full_tensor = shard_placement_dim1._to_replicate_tensor(
            shard_x,
            mesh_2d,
            mesh_dim=1,
            current_logical_shape=list(expected_shard_dim0.shape),
        )
        self.assertEqual(full_tensor, expected_shard_dim0)

        # shard_to_replicate on mesh dim-0
        full_tensor = shard_placement_dim0._to_replicate_tensor(
            full_tensor,
            mesh_2d,
            mesh_dim=0,
            current_logical_shape=list(x.shape),
        )
        self.assertEqual(full_tensor, x)

        """
        strided sharding: [
            [ 0, 1 | 4, 5 ],
            [ 2, 3 | 6, 7 ],
        ]
        """
        split_factor = 2
        # shard on mesh dim-0
        shard_placement_dim0 = _StridedShard(0, split_factor=split_factor)
        tensor_list, _ = shard_placement_dim0._split_tensor(x, mesh_dim0_size)
        shard_x = tensor_list[mesh_dim0_local_rank]
        expected_shard_dim0 = (
            torch.tensor([0, 1, 4, 5], device=self.device_type)
            if mesh_dim0_local_rank == 0
            else torch.tensor([2, 3, 6, 7], device=self.device_type)
        )
        self.assertEqual(shard_x, expected_shard_dim0)

        # shard on mesh dim-1
        shard_placement_dim1 = _StridedShard(0, split_factor=1)  # same as Shard(0)
        tensor_list, _ = shard_placement_dim1._split_tensor(shard_x, mesh_dim1_size)
        shard_x = tensor_list[mesh_dim1_local_rank]
        expected_shard_dim1 = expected_shard_dim0.view(mesh_dim1_size, -1)[
            mesh_dim1_local_rank
        ]
        self.assertEqual(shard_x, expected_shard_dim1)

        # shard_to_replicate on mesh dim-1
        full_tensor = shard_placement_dim1._to_replicate_tensor(
            shard_x,
            mesh_2d,
            mesh_dim=1,
            current_logical_shape=list(expected_shard_dim0.shape),
        )
        self.assertEqual(full_tensor, expected_shard_dim0)

        # shard_to_replicate on mesh dim-0
        full_tensor = shard_placement_dim0._to_replicate_tensor(
            full_tensor,
            mesh_2d,
            mesh_dim=0,
            current_logical_shape=list(x.shape),
        )
        self.assertEqual(full_tensor, x)

    @with_comms
    def test_2d_mesh_2d_tensor_strided_sharding(self):
        # Test 2: 1-d tensor over 2-d mesh
        mesh_2d = init_device_mesh(
            self.device_type, (2, self.world_size // 2), mesh_dim_names=("dim0", "dim1")
        )
        mesh_dim0_size = mesh_2d["dim0"].size()
        mesh_dim1_size = mesh_2d["dim1"].size()
        mesh_dim0_local_rank = mesh_2d["dim0"].get_local_rank(mesh_dim=0)
        mesh_dim1_local_rank = mesh_2d["dim1"].get_local_rank(mesh_dim=0)
        x = torch.arange(2 * self.world_size, device=self.device_type).reshape(2, -1)
        """
        strided sharding:
            rank 0: [[0], [4]]
            rank 1: [[2], [6]]
            rank 2: [[1], [5]]
            rank 3: [[3], [7]]
        """
        split_factor = 2
        # shard on mesh dim-0
        shard_placement_dim0 = _StridedShard(1, split_factor=split_factor)
        tensor_list, _ = shard_placement_dim0._split_tensor(x, mesh_dim0_size)
        shard_x = tensor_list[mesh_dim0_local_rank]
        expected_shard_dim0 = (
            torch.tensor([[0, 2], [4, 6]], device=self.device_type)
            if mesh_dim0_local_rank == 0
            else torch.tensor([[1, 3], [5, 7]], device=self.device_type)
        )
        self.assertEqual(shard_x, expected_shard_dim0)

        # shard on mesh dim-1
        shard_placement_dim1 = _StridedShard(1, split_factor=1)  # same as Shard(1)
        tensor_list, _ = shard_placement_dim1._split_tensor(shard_x, mesh_dim1_size)
        shard_x = tensor_list[mesh_dim1_local_rank]
        expected_shard_dim1 = [
            torch.tensor(value, device=self.device_type)
            for value in [[[0], [4]], [[2], [6]], [[1], [5]], [[3], [7]]]
        ][self.rank]
        self.assertEqual(shard_x, expected_shard_dim1)

        # shard_to_replicate on mesh dim-1
        full_tensor = shard_placement_dim1._to_replicate_tensor(
            shard_x,
            mesh_2d,
            mesh_dim=1,
            current_logical_shape=list(expected_shard_dim0.shape),
        )
        self.assertEqual(full_tensor, expected_shard_dim0)

        # shard_to_replicate on mesh dim-0
        full_tensor = shard_placement_dim0._to_replicate_tensor(
            full_tensor,
            mesh_2d,
            mesh_dim=0,
            current_logical_shape=list(x.shape),
        )
        self.assertEqual(full_tensor, x)


class Test2DStridedLocalShard(DTensorTestBase):
    @property
    def world_size(self):
        return 4

    @with_comms
    def test_fsdp1_tp_2d_dtensor_local_shards_and_offsets(self):
        # We are mimicking the behavior of FSDP1 + TP.
        # Currently, the 2D DTensor's local shard is correct, since from_local + redistribute incurs a all_gather behind the scene.
        # When we have a global_tensor of [0, 1, 2, 3, 4, 5, 6, 7], the local shard of 2D DTensor would be:
        # rank0: [0, 1], rank1: [2, 3], rank2: [4, 5], rank3: [6, 7]
        with CommDebugMode() as comm_mode:
            global_tensor = torch.arange(8).view(4, 2)
            mesh_2d = init_device_mesh(
                self.device_type, (2, 2), mesh_dim_names=("DP", "TP")
            )
            tp_mesh = mesh_2d["TP"]
            dtensor_tp = distribute_tensor(
                global_tensor, tp_mesh, placements=[Shard(0)]
            )
            dtensor_2d = DTensor.from_local(
                dtensor_tp.to_local(), mesh_2d, [Replicate(), Shard(0)], run_check=False
            ).redistribute(mesh_2d, [Shard(0), Shard(0)])
            self.assertEqual(
                comm_mode.get_comm_counts()[c10d_functional.all_gather_into_tensor], 1
            )

        self.assertEqual(
            dtensor_2d.to_local(), global_tensor[self.rank : self.rank + 1]
        )
        # compute_local_shape_and_global_offset currently does take into consideration of strided sharding,
        # which should after strided sharding is added.
        local_size, global_offset = compute_local_shape_and_global_offset(
            global_tensor.shape, mesh_2d, [Shard(0), Shard(0)]
        )
        self.assertEqual(local_size, torch.Size([1, 2]))
        self.assertEqual(global_offset, torch.Size([self.rank, 0]))

    @with_comms
    def test_fsdp2_tp_2d_dtensor_local_shards_and_offsets(self):
        # We are mimicking the behavior of FSDP2 + TP.
        # Currently, the 2D DTensor's local shard is incorrect for resharding, since we want to avoid extra communication.
        # It's incorrect for resharding, since `compute_local_shape_and_global_offset`
        # doesn't know the correct offsets for resharding.
        # When we have a global_tensor of [0, 1, 2, 3, 4, 5, 6, 7], the local shard of 2D DTensor would be:
        # local tensor -- rank0: [0, 1], rank1: [4, 5], rank2: [2, 3], rank3: [6, 7]
        # current offsets -- rank0: [0, 0], rank1: [1, 0], rank2: [2, 0], rank3: [3, 0]
        # Ideally, with strided sharding, the offsets should be  rank0: [0, 0], rank1: [2, 0], rank2: [1, 0], rank3: [3, 0]
        # TODO: to make the local shard of FSDP2 + TP correct for resharding, it would require strided_sharding
        # as well as let compute_local_shape_and_global_offset takes into consideration of strided_sharding.
        global_tensor = torch.arange(8).view(4, 2)
        with CommDebugMode() as comm_mode:
            mesh_2d = init_device_mesh(
                self.device_type, (2, 2), mesh_dim_names=("DP", "TP")
            )
            tp_mesh = mesh_2d["TP"]
            dtensor_tp = distribute_tensor(
                global_tensor, tp_mesh, placements=[Shard(0)]
            )
            chunks = list(torch.chunk(dtensor_tp.to_local(), 2, dim=0))
            shard_rank = 0 if self.rank // 2 == 0 else 1
            sharded_param = chunks[shard_rank]
            spec_2d = DTensorSpec(
                mesh=mesh_2d,
                placements=(_StridedShard(0, split_factor=2), Shard(0)),
                tensor_meta=TensorMeta(
                    global_tensor.size(),
                    global_tensor.stride(),
                    global_tensor.dtype,
                ),
            )

            dtensor_2d = DTensor(
                sharded_param,
                spec_2d,
                requires_grad=False,
            )

        self.assertEqual(
            comm_mode.get_comm_counts()[c10d_functional.all_gather_into_tensor], 0
        )

        self.assertEqual(global_tensor, dtensor_2d.full_tensor())


if __name__ == "__main__":
    run_tests()