File: test_xla_integration.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (167 lines) | stat: -rw-r--r-- 6,608 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]

import os
import unittest
from functools import wraps
from typing import Any, Callable, Dict, Tuple

import numpy as np

import torch
from torch import nn
from torch.distributed._tensor import (
    DeviceMesh,
    distribute_module,
    distribute_tensor,
    Replicate,
    Shard,
)
from torch.testing._internal.common_utils import run_tests, TestCase


# wrapper to check xla test requirements
def with_xla(func: Callable) -> Callable:
    assert func is not None

    @wraps(func)  # pyre-ignore[6]
    def wrapper(
        self, *args: Tuple[object], **kwargs: Dict[str, Any]  # type: ignore[misc]
    ) -> None:
        # TODO(yeounoh) replace this with xr.use_spmd() when we deprecate the flag.
        os.environ["XLA_USE_SPMD"] = "1"
        try:
            import torch_xla  # type:ignore[import]  # noqa: F401
        except ImportError as exc:
            raise unittest.SkipTest("torch_xla is not installed.") from exc
        self.device_type = "xla"
        func(self, *args, **kwargs)  # type: ignore[misc]
        os.environ["XLA_USE_SPMD"] = "0"

    return wrapper


class DTensorXLAIntegrationTest(TestCase):
    class SimpleLinear(nn.Module):
        def __init__(self) -> None:
            super(DTensorXLAIntegrationTest.SimpleLinear, self).__init__()
            self.fc1 = nn.Linear(128, 64)
            self.relu = nn.ReLU()
            self.fc2 = nn.Linear(64, 1)

        def forward(self, x):
            y = self.relu(self.fc1(x))
            z = self.fc2(y)
            return z

    @with_xla
    def test_xla_distribute_tensor_1d_shard(self):
        import torch_xla.runtime as xr  # type:ignore[import]

        device_count = xr.global_runtime_device_count()
        if device_count > 1:
            device_mesh = DeviceMesh("xla", list(range(device_count)))
            shard_spec = [Shard(0)]

            for requires_grad in [True, False]:
                tensor_to_shard = torch.randn(
                    3 * device_count, 3, requires_grad=requires_grad
                )
                dist_tensor = distribute_tensor(
                    tensor_to_shard, device_mesh, shard_spec
                )
                # TODO(yeounoh) switch to DTensor API when XLAShardedTensor inherits DTensor
                assert type(dist_tensor).__name__ == "XLAShardedTensor"
                global_tensor = dist_tensor.global_tensor  # type:ignore[attr-defined]
                self.assertEqual(
                    global_tensor.size(), torch.Size([3 * device_count, 3])
                )
                local_tensor = dist_tensor.local_shards[0].data
                self.assertEqual(local_tensor.size(), torch.Size([3, 3]))
                if requires_grad:
                    self.assertTrue(dist_tensor.global_tensor.requires_grad)
                    self.assertTrue(dist_tensor.is_leaf)

    @with_xla
    def test_xla_distribute_tensor_1d_replicate(self):
        import torch_xla.runtime as xr  # type:ignore[import]

        device_count = xr.global_runtime_device_count()
        device_mesh = DeviceMesh("xla", list(range(device_count)))
        shard_spec = [Replicate()]

        for requires_grad in [True, False]:
            tensor_to_shard = torch.randn(
                3 * device_count, 3, requires_grad=requires_grad
            )
            dist_tensor = distribute_tensor(tensor_to_shard, device_mesh, shard_spec)
            # TODO(yeounoh) switch to DTensor API when XLAShardedTensor inherits DTensor
            assert type(dist_tensor).__name__ == "XLAShardedTensor"
            global_tensor = dist_tensor.global_tensor  # type:ignore[attr-defined]
            self.assertEqual(global_tensor.size(), torch.Size([3 * device_count, 3]))
            local_tensor = dist_tensor.local_shards[0].data
            self.assertEqual(local_tensor.size(), torch.Size([3 * device_count, 3]))
            if requires_grad:
                self.assertTrue(dist_tensor.global_tensor.requires_grad)
                self.assertTrue(dist_tensor.is_leaf)

    @with_xla
    def test_xla_distribute_tensor_2d(self):
        import torch_xla.runtime as xr  # type:ignore[import]

        device_count = xr.global_runtime_device_count()
        if device_count > 1:
            device_mesh = DeviceMesh(
                "xla", np.array(range(device_count)).reshape(2, device_count // 2)
            )
            shard_spec = [Replicate(), Shard(0)]

            for requires_grad in [True, False]:
                tensor_to_shard = torch.randn(
                    3 * device_count // 2, 3, requires_grad=requires_grad
                )
                dist_tensor = distribute_tensor(
                    tensor_to_shard, device_mesh, shard_spec
                )
                # TODO(yeounoh) switch to DTensor API when XLAShardedTensor inherits DTensor
                assert type(dist_tensor).__name__ == "XLAShardedTensor"
                global_tensor = dist_tensor.global_tensor  # type:ignore[attr-defined]
                self.assertEqual(
                    global_tensor.size(), torch.Size([3 * device_count // 2, 3])
                )
                local_tensor = dist_tensor.local_shards[0].data
                self.assertEqual(local_tensor.size(), torch.Size([3, 3]))
                if requires_grad:
                    self.assertTrue(dist_tensor.global_tensor.requires_grad)
                    self.assertTrue(dist_tensor.is_leaf)

    @with_xla
    def text_xla_distribute_module(self):
        import torch_xla  # type:ignore[import]
        import torch_xla.core.xla_model as xm  # type:ignore[import]
        import torch_xla.runtime as xr  # type:ignore[import]

        model = self.SimpleLinear().to(xm.xla_device())

        device_count = xr.global_runtime_device_count()
        device_mesh = DeviceMesh("xla", list(range(device_count)))

        def shard_params(mod_name, mod, mesh):
            shard_spec = [Shard(0)]
            # annoate fc1 and fc2
            if isinstance(mod, nn.Linear):
                for name, param in mod.named_parameters():
                    # annotate the parameter tensors directly
                    distribute_tensor(param, mesh, shard_spec)

        sharded_model = distribute_module(model, device_mesh, shard_params)
        self.assertTrue(
            torch_xla._XLAC._get_xla_sharding_spec(sharded_model.fc1.weight) != ""
        )
        self.assertTrue(
            torch_xla._XLAC._get_xla_sharding_spec(sharded_model.fc2.weight) != ""
        )


if __name__ == "__main__":
    run_tests()