1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
# Owner(s): ["module: unknown"]
import functools
import gc
from typing import Union
import torch
import torch.nn as nn
from torch.distributed._composable import checkpoint
from torch.distributed._tensor import init_device_mesh
from torch.distributed._tools.fsdp2_mem_tracker import FSDPMemTracker
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
CheckpointWrapper,
)
from torch.distributed.fsdp import (
CPUOffloadPolicy,
fully_shard,
MixedPrecisionPolicy,
OffloadPolicy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
def _init_cublas_workspace(dev: torch.device):
lin = torch.nn.Linear(768, 768, device=dev)
inp = torch.randn(1, 768, device=dev)
lin(inp).sum().backward()
del lin
del inp
def _reset_mem_stats(dev: torch.device):
torch.cuda.empty_cache()
torch.cuda.reset_accumulated_memory_stats(dev)
torch.cuda.reset_peak_memory_stats(dev)
class TestTrackerFullyShard1DTrainingCore(FSDPTest):
@property
def world_size(self) -> int:
return min(4, torch.cuda.device_count())
@skip_if_lt_x_gpu(2)
def test_tracker_multi_group_eager(self):
"""
Tests tracker accuracy when using multiple parameter groups for
communication (for communication and computation overlap plus memory
reduction) and different mixed precision policies.
"""
self.run_subtests(
{
"reshard_after_forward": [True, False],
"offload_policy": [
CPUOffloadPolicy(pin_memory=False),
OffloadPolicy(),
],
"mp_policy": [
MixedPrecisionPolicy(
param_dtype=torch.float16, reduce_dtype=torch.float32
),
],
},
self._test_tracker_multi_group,
)
def _test_tracker_multi_group(
self,
reshard_after_forward: Union[bool, int],
offload_policy: OffloadPolicy,
mp_policy: MixedPrecisionPolicy,
):
debug = False
dev = torch.device(torch.cuda.current_device())
_init_cublas_workspace(dev)
gc.collect()
_reset_mem_stats(dev)
mem_stats = torch.cuda.memory_stats(dev)
pre_cuda_active = mem_stats["active_bytes.all.current"]
torch.manual_seed(42)
lin_dim, bsz = 2048, 8192
with torch.device(dev):
model = nn.Sequential(*[MLP(dim=lin_dim, device=dev) for _ in range(4)])
mesh = init_device_mesh("cuda", (self.world_size,))
fully_shard_fn = functools.partial(
fully_shard,
mesh=mesh,
reshard_after_forward=reshard_after_forward,
offload_policy=offload_policy,
mp_policy=mp_policy,
)
for mlp in model:
fully_shard_fn(mlp)
fully_shard_fn(model)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
inp = torch.randn((bsz, lin_dim), device=dev)
fmt = FSDPMemTracker(model, optim)
fmt.track_inputs((inp,))
with fmt:
for iter_idx in range(2):
loss = model(inp).sum()
loss.backward()
optim.step()
optim.zero_grad()
if iter_idx == 0:
fmt.reset_mod_stats()
mem_stats = torch.cuda.memory_stats()
tracker_max = fmt.get_tracker_snapshot("peak")[dev]["Total"]
cuda_max = mem_stats["active_bytes.all.peak"] - pre_cuda_active
accuracy = tracker_max / cuda_max
if self.rank == 0 and debug:
print(f"Accuracy: {accuracy} Tracker Max:{tracker_max} CUDA Max:{cuda_max}")
self.assertAlmostEqual(
accuracy,
1.0,
delta=0.1,
msg=f"Tracker Max:{tracker_max} CUDA Max:{cuda_max}",
)
del model
del inp
del optim
@skip_if_lt_x_gpu(2)
def test_tracker_non_root_forward_backward(self):
"""
Tests tracker accracy when running forward/backward through a non-root.
"""
debug = False
dev = torch.device(torch.cuda.current_device())
_init_cublas_workspace(dev)
gc.collect()
_reset_mem_stats(dev)
mem_stats = torch.cuda.memory_stats(dev)
pre_cuda_active = mem_stats["active_bytes.all.current"]
torch.manual_seed(42)
lin_dim, bsz = 2048, 8
model = nn.Sequential(*[MLP(lin_dim, dev) for _ in range(3)])
for mlp in model:
fully_shard(mlp)
fully_shard(model)
optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=True)
torch.manual_seed(42 + self.rank)
inp = torch.randn((bsz, lin_dim), device=dev)
fmt = FSDPMemTracker(model, optim)
fmt.track_inputs((inp,))
with fmt:
for iter_idx in range(2):
nonroot_loss = model[0](inp).sum()
nonroot_loss.backward()
optim.step()
optim.zero_grad()
if iter_idx == 0:
fmt.reset_mod_stats()
mem_stats = torch.cuda.memory_stats()
tracker_max = fmt.get_tracker_snapshot("peak")[dev]["Total"]
cuda_max = mem_stats["active_bytes.all.peak"] - pre_cuda_active
accuracy = tracker_max / cuda_max
if self.rank == 0 and debug:
print(f"Accuracy: {accuracy} Tracker Max:{tracker_max} CUDA Max:{cuda_max}")
self.assertAlmostEqual(
accuracy,
1.0,
delta=0.1,
msg=f"Tracker Max:{tracker_max} CUDA Max:{cuda_max}",
)
del inp
del model
del optim
class TestTrackerFullyShard1DTrainingCompose(FSDPTest):
@property
def world_size(self) -> int:
return min(torch.cuda.device_count(), 4)
@skip_if_lt_x_gpu(2)
def test_tracker_with_activation_checkpointing(self):
"""
Tests tracker accuracy when composing with activation checkpointing.
"""
self.run_subtests(
{
"reshard_after_forward": [True, False],
"checkpoint_impl": ["composable", "wrapper"],
},
self._test_tracker_with_activation_checkpointing,
)
def _test_tracker_with_activation_checkpointing(
self, reshard_after_forward: Union[bool, int], checkpoint_impl: str
):
assert checkpoint_impl in ("composable", "wrapper")
debug = False
dev = torch.device(torch.cuda.current_device())
_init_cublas_workspace(dev)
gc.collect()
_reset_mem_stats(dev)
mem_stats = torch.cuda.memory_stats(dev)
pre_cuda_active = mem_stats["active_bytes.all.current"]
torch.manual_seed(42)
vocab_size = 8192
bsz, seq_len = 16, 512
with torch.device(dev):
model_args = ModelArgs(
n_layers=4,
n_heads=4,
vocab_size=vocab_size,
max_seq_len=seq_len,
dropout_p=0.1,
)
model = Transformer(model_args)
foreach = False
fully_shard_fn = functools.partial(
fully_shard,
reshard_after_forward=reshard_after_forward,
)
if checkpoint_impl == "wrapper":
apply_activation_checkpointing(
model, check_fn=lambda m: isinstance(m, TransformerBlock)
)
for module in model.modules():
# Apply to `CheckpointWrapper`, which wraps `TransformerBlock`
if isinstance(module, CheckpointWrapper):
fully_shard_fn(module)
else:
for module in model.modules():
if isinstance(module, TransformerBlock):
if checkpoint_impl == "composable":
checkpoint(module)
fully_shard_fn(module)
fully_shard_fn(model)
optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=foreach)
torch.manual_seed(42 + self.rank)
inp = torch.randint(0, vocab_size, (bsz, seq_len), device=dev)
fmt = FSDPMemTracker(model, optim)
fmt.track_inputs((inp,))
with fmt:
for iter_idx in range(2):
loss = model(inp).sum()
loss.backward()
optim.step()
optim.zero_grad()
if iter_idx == 0:
fmt.reset_mod_stats()
mem_stats = torch.cuda.memory_stats()
tracker_max = fmt.get_tracker_snapshot("peak")[dev]["Total"]
cuda_max = mem_stats["active_bytes.all.peak"] - pre_cuda_active
accuracy = tracker_max / cuda_max
if self.rank == 0 and debug:
print(f"Accuracy: {accuracy} Tracker Max:{tracker_max} CUDA Max:{cuda_max}")
self.assertAlmostEqual(
accuracy,
1.0,
delta=0.1,
msg=f"Tracker Max:{tracker_max} CUDA Max:{cuda_max}",
)
del inp
del model
del optim
if __name__ == "__main__":
run_tests()
|