1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
# Owner(s): ["module: unknown"]
import gc
import unittest
from typing import Tuple
import torch
import torch.nn as nn
from torch.distributed._tools.mem_tracker import MemTracker
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
run_tests,
skipIfRocm,
skipIfTorchDynamo,
TestCase,
)
from torch.utils.checkpoint import checkpoint
class TestMemTracker(TestCase):
def _init_cublas_workspace(self, dev: torch.device):
lin = torch.nn.Linear(768, 768, device=dev)
inp = torch.randn(1, 768, device=dev)
lin(inp).sum().backward()
del lin
del inp
def _reset_mem_stats(self, dev: torch.device):
torch.cuda.empty_cache()
torch.cuda.reset_accumulated_memory_stats(dev)
torch.cuda.reset_peak_memory_stats(dev)
@skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/115653")
@unittest.skipIf(not TEST_CUDA, "CUDA not available")
@skipIfRocm()
def test_cuda_tracker_equivalence(
self,
):
"""
Tests that the tracker correctly calculates the peak memory.
"""
dev = torch.device(torch.cuda.current_device())
self._init_cublas_workspace(dev)
gc.collect(1)
self._reset_mem_stats(dev)
mem_stats = torch.cuda.memory_stats(dev)
pre_cuda_active = mem_stats["active_bytes.all.current"]
bsz, n_layers, dim, dtype = 16, 4, 512, torch.bfloat16
class DummyModel(nn.Module):
def __init__(self, n_layers: int, dim: int, dtype: torch.dtype):
super().__init__()
self.linears = nn.ModuleList()
for _ in range(n_layers):
self.linears.append(nn.Linear(dim, dim, dtype=dtype))
self.linears.append(nn.ReLU())
def forward(self, x):
for layer in self.linears:
x = layer(x)
return x
with torch.device(dev):
model = DummyModel(n_layers, dim, dtype=dtype)
optim = torch.optim.Adam(model.parameters(), foreach=True)
input_batch = torch.randn(bsz, dim, device=dev, dtype=dtype)
mem_tracker = MemTracker()
mem_tracker.track_external(model, optim, input_batch)
with mem_tracker as mt:
for iter_idx in range(2):
model(input_batch).sum().backward()
optim.step()
optim.zero_grad()
if iter_idx == 0:
mt.reset_mod_stats()
# Check for accuracy of peak memory
tracker_max = mt.get_tracker_snapshot("peak")[dev]["Total"]
mem_stats = torch.cuda.memory_stats(dev)
cuda_max = mem_stats["active_bytes.all.peak"] - pre_cuda_active
accuracy = tracker_max / cuda_max
self.assertAlmostEqual(accuracy, 1.0, delta=0.1)
@skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/115653")
@unittest.skipIf(not TEST_CUDA, "CUDA not available")
def test_tracker_with_activation_checkpointing(
self,
):
"""
Tests that the tracker correctly computes the peak memory during activation checkpointing.
"""
dev = torch.device(torch.cuda.current_device())
self._init_cublas_workspace(dev)
gc.collect(1)
self._reset_mem_stats(dev)
mem_stats = torch.cuda.memory_stats(dev)
pre_cuda_active = mem_stats["active_bytes.all.current"]
bsz, n_layers, dim, dtype = 128, 4, 1024, torch.float16
class MLPBlock(nn.Module):
def __init__(self, dim: int, dtype: torch.dtype):
super().__init__()
self.mlp_block = nn.Sequential(
nn.Linear(dim, 2 * dim, dtype=dtype),
nn.ReLU(),
nn.Linear(2 * dim, dim, dtype=dtype),
)
def forward(self, x):
return self.mlp_block(x)
class MyModule(nn.Module):
def __init__(
self, n_layers: int, dim: int, dtype: torch.dtype, use_ac: bool = False
):
super().__init__()
self.mlp_blocks = nn.ModuleList()
self.use_ac = use_ac
for _ in range(n_layers):
self.mlp_blocks.append(MLPBlock(dim, dtype=dtype))
def forward(self, x):
for i, block in enumerate(self.mlp_blocks):
if i >= 1 and self.use_ac:
x = checkpoint(
block, x, preserve_rng_state=True, use_reentrant=False
)
else:
x = block(x)
return x
with torch.device(dev):
model = MyModule(n_layers, dim, dtype, True)
optim = torch.optim.Adam(model.parameters(), foreach=True)
mem_tracker = MemTracker()
mem_tracker.track_external(model, optim)
with mem_tracker as mt:
input_batch = torch.randn(bsz, dim, dim, device=dev, dtype=dtype)
for iter_idx in range(2):
model(input_batch).sum().backward()
optim.step()
optim.zero_grad()
if iter_idx == 0:
mt.reset_mod_stats()
# Check for accuracy of peak memory
tracker_max = mt.get_tracker_snapshot("peak")[dev]["Total"]
mem_stats = torch.cuda.memory_stats(dev)
cuda_max = mem_stats["active_bytes.all.peak"] - pre_cuda_active
accuracy = tracker_max / cuda_max
self.assertAlmostEqual(accuracy, 1.0, delta=0.1)
@skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/115653")
def test_tracker_attribution(self):
"""
Tests that the tracker correctly categorizes params, gradients, and optimizer states.
"""
dev = torch.device(torch.get_default_device())
gc.collect(1)
bsz, n_layers, dim, dtype = 16, 3, 128, torch.float32
def get_param_grad_optstate_actual_bytes(
model: nn.Module, opt: torch.optim.Optimizer
) -> Tuple[int, int, int]:
param_bytes = 0
grad_bytes = 0
opt_state_bytes = 0
for param in model.parameters():
if param.device == dev:
param_bytes += param.numel() * param.element_size()
if param.grad is not None and param.grad.device == dev:
grad_bytes += param.grad.numel() * param.grad.element_size()
for state in opt.state.values():
for v in state.values():
if isinstance(v, torch.Tensor) and v.device == dev:
opt_state_bytes += v.numel() * v.element_size()
return param_bytes, grad_bytes, opt_state_bytes
def get_param_grad_optstate_bytes_from_tracker(
tracker: MemTracker,
) -> Tuple[int, int, int]:
snapshot = tracker.get_tracker_snapshot()
param_bytes = snapshot[dev]["Parameter"]
grad_bytes = snapshot[dev]["Gradient"]
opt_state_bytes = snapshot[dev]["Optstate"]
return param_bytes, grad_bytes, opt_state_bytes
def test_attribution_equivalence(
mt: MemTracker,
model: nn.Module,
opt: torch.optim.Optimizer,
) -> None:
actual = get_param_grad_optstate_actual_bytes(model, opt)
tracker = get_param_grad_optstate_bytes_from_tracker(mt)
for a, b in zip(actual, tracker):
if a == 0:
self.assertEqual(b, 0)
else:
self.assertAlmostEqual(b / a, 1.0, delta=0.1)
class DummyModel(nn.Module):
def __init__(self, n_layers: int, dim: int, dtype: torch.dtype):
super().__init__()
self.MLP_layers = nn.ModuleList()
for _ in range(n_layers):
self.MLP_layers.extend(
[nn.Linear(dim, 2 * dim, dtype=dtype), nn.GELU()]
)
self.MLP_layers.extend(
[nn.Linear(2 * dim, dim, dtype=dtype), nn.GELU()]
)
def forward(self, x):
for layer in self.MLP_layers:
x = layer(x)
return x
with torch.device(dev):
model = DummyModel(n_layers, dim, dtype=dtype)
optim = torch.optim.Adam(model.parameters(), foreach=True)
mem_tracker = MemTracker()
mem_tracker.track_external(model, optim)
with mem_tracker as mt:
input_batch = torch.randn(bsz, dim, device=dev, dtype=dtype)
# Before forward: Only parameters and input are allocated
test_attribution_equivalence(mt, model, optim)
output = model(input_batch)
output.sum().backward()
# After backward: Gradients are allocated
test_attribution_equivalence(mt, model, optim)
output = None
optim.step()
# After step: Optimizer state is allocated
test_attribution_equivalence(mt, model, optim)
optim.zero_grad()
# After zero_grad: Gradients are deallocated
test_attribution_equivalence(mt, model, optim)
if __name__ == "__main__":
run_tests()
|