1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
# Owner(s): ["module: unknown"]
import copy
import unittest
from typing import Tuple
import torch
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.distributed._tools.ilp_utils import (
aggregate_stats,
get_peak_memory_runtime_baseline,
ModuleInfo,
parse_module_info,
)
from torch.distributed._tools.mem_tracker import _ModState, MemTracker
from torch.distributed._tools.runtime_estimator import RuntimeEstimator
from torch.distributed._tools.sac_estimator import SACEstimator, SACStats
from torch.distributed._tools.sac_ilp import (
get_optimal_checkpointing_policy_per_module,
sac_milp,
)
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
class TestSACILP(TestCase):
def setUp(self):
super().setUp()
self.device = torch.cuda.current_device()
self.estimate_mode = "operator-level-cost-model"
def _init_model_input_optimizer(
self,
) -> Tuple[torch.nn.Module, torch.optim.Optimizer, torch.Tensor]:
bsz = 8
model_args = ModelArgs(
n_layers=4,
n_heads=12,
vocab_size=8192,
max_seq_len=1024,
dim=768,
dropout_p=0.1,
)
with torch.device(self.device):
model = Transformer(model_args)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=True)
inp = torch.randint(
0, model_args.vocab_size, (bsz, model_args.max_seq_len), device=self.device
)
return (model, optimizer, inp)
def _run_and_get_memTracker(
self,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
inp: torch.Tensor,
) -> MemTracker:
mem_tracker = MemTracker()
mem_tracker.track_external(model, optimizer)
with mem_tracker as mt:
for iter_idx in range(2): # running twice to initialize optimizer
output = model(inp)
output.sum().backward()
if iter_idx == 1:
last_snapshot = mt.get_tracker_snapshot("current")
optimizer.step()
optimizer.zero_grad()
if iter_idx == 0:
mt.reset_mod_stats()
assert last_snapshot is not None
for mod_stats in mem_tracker.memory_tracking.values():
# postprocessing due to the fact that for ModTracker, the post backward hook
# is not being called for modules whose inputs don't require gradients
# TODO: fix this in ModTracker and ensure it does not lead to any perf regression
if _ModState.POST_BW not in mod_stats.snapshots.keys():
mod_stats.snapshots.setdefault(_ModState.POST_BW, []).append(
copy.deepcopy(last_snapshot)
)
return mem_tracker
def _run_and_get_runtime_estimator(
self,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
inp: torch.Tensor,
) -> RuntimeEstimator:
def _run_one_step() -> None:
output = model(inp)
output.sum().backward()
optimizer.step()
optimizer.zero_grad()
# Initializing optimizer states and warm-up
_run_one_step()
runtime_estimator = RuntimeEstimator()
with runtime_estimator(estimate_mode_type=self.estimate_mode):
_run_one_step() # We use only one iteration for estimation
return runtime_estimator
def _run_and_get_sac_estimator(
self,
model: torch.nn.Module,
inp: torch.Tensor,
) -> SACEstimator:
sac_estimator = SACEstimator()
with sac_estimator(estimate_mode_type=self.estimate_mode):
loss = model(inp).sum()
loss.backward()
return sac_estimator
def _collect_module_info_with_fake_tensor_mode(self) -> ModuleInfo:
with FakeTensorMode():
model, optimizer, inp = self._init_model_input_optimizer()
mem_tracker = self._run_and_get_memTracker(model, optimizer, inp)
runtime_estimator = self._run_and_get_runtime_estimator(
model, optimizer, inp
)
sac_estimator = self._run_and_get_sac_estimator(model, inp)
mod_info = aggregate_stats(
model,
mem_tracker,
runtime_estimator,
sac_estimator,
torch.device(self.device),
)
return mod_info
@skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/115653")
@unittest.skipIf(not TEST_CUDA, "CUDA not available")
def test_sac_ilp_case1(self):
"""
This is a case where the memory budget is either binding or too tight,
meaning that with some AC, the model can fit into GPU memory.
"""
mod_info = self._collect_module_info_with_fake_tensor_mode()
g = parse_module_info(mod_info)
peak_mem, compute_time = get_peak_memory_runtime_baseline(g)
self.assertAlmostEqual(peak_mem / 2583888896, 1, delta=0.05)
ac_decisions, recomputation_time, _ = sac_milp(
g, memory_budget=1.6, world_size=4
)
# The solution should AC all four transformer layers. On A100 machine, the percentage of
# activation memory to discard is 0.5232 for three layers and is 0.7964 for the fourth layer.
# Due to symmetry, the layer that has 0.7964 can be any of the first three layers. On CI,
# due to machine variance and difference in flops, the results can be different -- e.g.,
# the ratios are 0.672, 0.5646, 0.5646, 0.5646 for the four transformer layers for test
# linux-focal-cuda11.8-py3.10-gcc9 / test (distributed, 1, 3, lf.linux.8xlarge.nvidia.gpu).
# and recomputation_time = 58.14; compute_time = 902.26
modules_to_ac = set(ac_decisions.keys())
sorted_discard_ratio = sorted(ac_decisions.values())
self.assertEqual(
modules_to_ac,
{"Transformer.layers." + str(i) for i in range(4)}, # n_layers=4
)
self.assertAlmostEqual(sorted_discard_ratio[0], 0.55, delta=0.05)
self.assertAlmostEqual(sorted_discard_ratio[1], 0.55, delta=0.05)
self.assertAlmostEqual(sorted_discard_ratio[2], 0.55, delta=0.05)
self.assertAlmostEqual(sum(sorted_discard_ratio), 2.35, delta=0.05)
self.assertAlmostEqual(ac_decisions["Transformer.layers.3"], 0.55, delta=0.05)
# On A100 machine, recomputation_time is 6.97 ms and compute_time is 97.97 ms.
# Since runtime is device_flops dependent, so we only check the ratio
self.assertAlmostEqual(
(recomputation_time / compute_time) / (6.97 / 97.97), 1, delta=0.25
)
@skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/115653")
@unittest.skipIf(not TEST_CUDA, "CUDA not available")
def test_sac_ilp_case2(self):
"""
This is a case where the memory budget is not binding, meaning that no
AC is needed to fit the model into memory.
"""
mod_info = self._collect_module_info_with_fake_tensor_mode()
g = parse_module_info(mod_info)
ac_decisions, recomputation_time, peak_mem = sac_milp(
g, memory_budget=2.4, world_size=4
)
self.assertDictEqual(ac_decisions, {})
self.assertEqual(recomputation_time, 0)
self.assertGreater(peak_mem, 1)
@skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/115653")
@unittest.skipIf(not TEST_CUDA, "CUDA not available")
def test_sac_ilp_case3(self):
"""
This is a case where the memory budget is too tight, meaning that even with
aggressive AC, the model cannot fit into memory.
"""
mod_info = self._collect_module_info_with_fake_tensor_mode()
g = parse_module_info(mod_info)
ac_decisions, recomputation_time, peak_mem = sac_milp(
g, memory_budget=0.8, world_size=4
)
self.assertEqual(ac_decisions, {})
self.assertEqual(recomputation_time, 0)
self.assertEqual(peak_mem, -1)
class TestOptimalCheckpointingPolicy(TestCase):
# tests are adpated from tests in xformers
# https://github.com/facebookresearch/xformers/blob/c6c0ac31f1b08542a0bc27278c6ed10f825f6963/tests/test_checkpoint.py#L222
def setUp(self):
super().setUp()
data = [
("aten.copy_", 5, 0),
("aten.add", 5, 100),
("aten.div", 8, 100),
("aten.mm", 15, 120),
("aten.native_dropout", 15, 0),
("aten.linear", 9, 100),
("aten.t", 1, 0),
("aten.relu_", 5, 0),
]
self.sac_stats = SACStats(
func_names=[x[0] for x in data],
runtimes=[x[1] for x in data],
memory=[x[2] for x in data],
view_like_ops=[6],
rand_ops=[4],
saved_autograd_ops=[], # not needed for SAC decisions
inplace_ops=[(0, 0), (7, 5)],
force_store_random=False,
)
@skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/115653")
@unittest.skipIf(not TEST_CUDA, "CUDA not available")
def test_get_optimial_checkpointing_policy_per_module(self):
for memory_budget, optimal_soln in [
(0, [1, 0, 0, 0, 1, 0, 0, 0]),
(100 / 420, [1, 0, 0, 0, 1, 1, 0, 1]),
(120 / 420, [1, 0, 0, 1, 1, 0, 0, 0]),
(200 / 420, [1, 0, 1, 0, 1, 1, 0, 1]),
(220 / 420, [1, 0, 0, 1, 1, 1, 0, 1]),
(320 / 420, [1, 0, 1, 1, 1, 1, 0, 1]),
(420 / 420, [1, 1, 1, 1, 1, 1, 0, 1]),
]:
soln = get_optimal_checkpointing_policy_per_module(
sac_stats=self.sac_stats, memory_budget=memory_budget
)
self.assertEqual(optimal_soln, soln)
if __name__ == "__main__":
run_tests()
|