File: test_e2e_save_and_load.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (509 lines) | stat: -rw-r--r-- 17,196 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# Owner(s): ["oncall: distributed"]

import time
from dataclasses import dataclass, field
from enum import auto, Enum
from functools import partial
from io import BytesIO
from typing import Any, Dict, List

import torch
import torch.distributed as dist
import torch.distributed.checkpoint as DCP
import torch.distributed.checkpoint.state_dict_saver as saver
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._tensor.device_mesh import init_device_mesh
from torch.distributed.checkpoint.state_dict import (
    _patch_model_state_dict,
    _patch_optimizer_state_dict,
    get_model_state_dict,
    get_optimizer_state_dict,
    get_state_dict,
    set_state_dict,
)
from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys
from torch.distributed.checkpoint.stateful import Stateful
from torch.distributed.checkpoint.utils import CheckpointException
from torch.distributed.distributed_c10d import ReduceOp
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import ShardingStrategy
from torch.distributed.tensor.parallel import (
    ColwiseParallel,
    parallelize_module,
    RowwiseParallel,
)
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
    DTensorTestBase,
    skip_if_lt_x_gpu,
    with_comms,
)
from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir
from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin


# Simple and boring model
class TestDummyModel(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        torch.manual_seed(0)
        self.net1 = nn.Linear(8, 16)
        self.net2 = nn.Linear(16, 32)
        self.net3 = nn.Linear(32, 64)
        self.net4 = nn.Linear(64, 8)

    def forward(self, x):
        x = F.relu(self.net1(x))
        x = F.relu(self.net2(x))
        x = F.relu(self.net3(x))
        x = F.relu(self.net4(x))
        return x

    def get_input(self):
        return torch.rand(8, 8, device="cuda")


class TestStatefulObj:
    def __init__(self) -> None:
        self.data = torch.rand(10, 10, device="cuda")

    def state_dict(self):
        return {"data": self.data}

    def load_state_dict(self, state_dict):
        self.data = state_dict["data"]

    def __eq__(self, other):
        return torch.equal(self.data, other.data)


class ModelType(Enum):
    FSDP = auto()
    HSDP = auto()
    FSDP_TP = auto()
    DDP = auto()
    NONE = auto()  # no parallelization


@dataclass
class TestTrainState:
    step: int = 0
    current_loss: float = -1
    losses: List[float] = field(default_factory=list)

    def state_dict(self) -> Dict[str, Any]:
        loss_bytes = BytesIO()
        torch.save(self.losses, loss_bytes)
        return {
            "step": torch.tensor(self.step, dtype=torch.int32),
            "current_loss": torch.tensor(self.current_loss, dtype=torch.float32),
            "losses": loss_bytes,
        }

    def load_state_dict(self, state_dict) -> None:
        self.step = state_dict["step"].item()
        self.current_loss = state_dict["current_loss"].item()
        state_dict["losses"].seek(0)
        self.losses = torch.load(state_dict["losses"])

    def __eq__(self, other):
        return (
            self.step == other.step
            and self.current_loss == other.current_loss
            and self.losses == other.losses
        )


def _train(model, optim, train_steps=1):
    torch.manual_seed(0)
    loss = None

    train_state = TestTrainState()

    for _ in range(train_steps):
        loss = model(model.get_input()).sum()
        loss.backward()

        # We usually sync the loss across dp ranks in real training.
        # This is just simulating for testing purpose.
        train_state.step += 1
        train_state.current_loss = torch.rand(1).item()
        train_state.losses.append(train_state.current_loss)

        optim.step()
        optim.zero_grad()

    return loss, train_state


class TestE2ESaveAndLoad(DTensorTestBase, VerifyStateDictMixin):
    @property
    def backend(self):
        return "cpu:gloo,cuda:nccl"

    def _create_model(self, compile, model_type, state_dict_options=None):
        dummy_model = TestDummyModel().cuda()

        assert model_type in ModelType, f"{model_type} is not supported."
        if model_type == ModelType.FSDP:
            device_mesh = init_device_mesh(self.device_type, (self.world_size,))
            model = FSDP(
                dummy_model,
                device_mesh=device_mesh,
                use_orig_params=True,
            )
        elif model_type == ModelType.HSDP:
            device_mesh = init_device_mesh(self.device_type, (2, self.world_size // 2))
            model = FSDP(
                dummy_model,
                device_mesh=device_mesh,
                use_orig_params=True,
                sharding_strategy=ShardingStrategy.HYBRID_SHARD,
            )
        elif model_type == ModelType.FSDP_TP:
            mesh_2d = init_device_mesh(
                self.device_type, (2, self.world_size // 2), mesh_dim_names=("dp", "tp")
            )
            tp_mesh = mesh_2d["tp"]
            dp_mesh = mesh_2d["dp"]
            parallelize_plan = {
                "net1": ColwiseParallel(),
                "net2": RowwiseParallel(),
            }
            model = parallelize_module(dummy_model, tp_mesh, parallelize_plan)
            model = FSDP(model, device_mesh=dp_mesh, use_orig_params=True)
        elif model_type == ModelType.DDP:
            model = DistributedDataParallel(dummy_model)
            model.get_input = partial(TestDummyModel.get_input, model)
        else:
            model = dummy_model

        if compile:
            # TODO: enable dynamic=True when dynamic shape support is enabled.
            # model = torch.compile(model)
            model = torch.compile(model, dynamic=False)

        optim = self._optim(model)
        if model_type is not ModelType.NONE:
            _patch_model_state_dict(model, options=state_dict_options)
            _patch_optimizer_state_dict(
                model, optimizers=optim, options=state_dict_options
            )

        return model, optim

    def _optim(self, model):
        return torch.optim.Adam(model.parameters(), lr=0.1)

    @with_comms
    @skip_if_lt_x_gpu(4)
    @with_temp_dir
    @parametrize("compile", [True, False])
    # TODO: Previously PairwiseParallel does not shard properly, passing ModelType.FSDP_TP test where it
    # should have failed. Disabling the failed test temporarily to unblock the deprecation of PairwiseParallel.
    @parametrize("model_type", [ModelType.FSDP, ModelType.HSDP, ModelType.DDP])
    def test_e2e(self, compile, model_type):
        self._run_e2e_test(compile, model_type)

    @with_comms
    @skip_if_lt_x_gpu(4)
    @with_temp_dir
    @parametrize("cache_staged_state_dict", [False, True])
    def test_e2e_async_cached(self, cache_staged_state_dict):
        self._run_e2e_test(
            compile=False,
            model_type=ModelType.FSDP,
            async_op=True,
            cache_staged_state_dict=cache_staged_state_dict,
        )

    def _run_e2e_test(
        self, compile, model_type, async_op=False, cache_staged_state_dict=False
    ):
        model, optim = self._create_model(compile, ModelType.NONE)
        _train(model, optim, train_steps=2)

        dist_model, dist_optim = self._create_model(compile, model_type)
        _, original_train_state = _train(dist_model, dist_optim, train_steps=2)

        original_stateful_obj = TestStatefulObj()  # tests arbitrary saving/loading
        sd = {
            "model": dist_model,
            "optimizer": dist_optim,
            "s": original_stateful_obj,
            "train_state": original_train_state,
        }

        if async_op:
            writer = DCP.FileSystemWriter(
                self.temp_dir, cache_staged_state_dict=cache_staged_state_dict
            )
            f = saver.async_save(sd, storage_writer=writer)
            t = time.monotonic()
            while not f.done():
                time.sleep(1)
                print(f"still waiting... {time.monotonic() - t}")

            f.result()
        else:
            DCP.save(sd, checkpoint_id=self.temp_dir)

        loaded_stateful_obj = TestStatefulObj()
        loaded_train_state = TestTrainState()
        dist_model, dist_optim = self._create_model(compile, model_type)

        DCP.load(
            state_dict={
                "model": dist_model,
                "optimizer": dist_optim,
                "s": loaded_stateful_obj,
                "train_state": loaded_train_state,
            },
            checkpoint_id=self.temp_dir,
        )

        self.assertEqual(original_stateful_obj, loaded_stateful_obj)
        self.assertEqual(original_train_state, loaded_train_state)

        # train one more step on both models
        loss, _ = _train(model, optim, train_steps=1)
        dist_loss, _ = _train(dist_model, dist_optim, train_steps=1)
        self.assertEqual(loss, dist_loss)

        dist_msd, dist_osd = get_state_dict(dist_model, optimizers=dist_optim)
        model_sd, optim_sd = get_state_dict(model, optimizers=optim)

        self._verify_msd(model_sd, dist_msd)
        self._verify_osd_by_load(model, optim, self._optim(model), dist_osd)

    @with_temp_dir
    def test_stateful_and_non_stateful_loads(self) -> None:
        class StateDict(Dict):
            def __init__(self):
                self.set_sd_item_called = False

            def __setitem__(self, item, value):
                self.set_sd_item_called = True
                super().__setitem__(item, value)

        class Foo(Stateful):
            def __init__(self):
                self.load_state_dict_called = False

            def state_dict(self):
                return {}

            def load_state_dict(self, state_dict):
                self.load_state_dict_called = True

        stateful_foo = Foo()
        sd = StateDict()
        sd["foo"] = stateful_foo
        sd.set_sd_item_called = False

        DCP.save(sd, checkpoint_id=self.temp_dir)
        DCP.load(sd, checkpoint_id=self.temp_dir)

        # Validate that the stateful object was loaded in-place
        self.assertTrue(stateful_foo.load_state_dict_called)
        # Validate that the stateful object was NOT replaced in the state dict
        self.assertFalse(sd.set_sd_item_called)

        sd = StateDict()
        sd["foo"] = {"replicated": torch.rand(10, 10), "bytes": [1, 2, 3, 4]}
        sd.set_sd_item_called = False

        DCP.save(sd, checkpoint_id=self.temp_dir)
        DCP.load(sd, checkpoint_id=self.temp_dir)

        # Validate that the non-stateful state dict was replaced with the loaded state dict
        self.assertTrue(sd.set_sd_item_called)

    @with_comms
    @with_temp_dir
    @skip_if_lt_x_gpu(4)
    def test_different_ordered_state_dict_keys(self):
        """Tests that the order of keys in the state dict does not matter when loading
        If order was not accounted for, the following test would cause a deadlock.
        """

        world_size = self.world_size

        class Foo:
            def state_dict(self):
                return {}

            def load_state_dict(self, state_dict):
                tl = [
                    torch.ones(2, dtype=torch.int64, device="cuda")
                    for _ in range(world_size)
                ]
                t = (
                    torch.arange(2, dtype=torch.int64, device="cuda")
                    + 1
                    + 2 * dist.get_rank()
                )
                dist.all_gather(tl, t, async_op=False)

        class Bar:
            def state_dict(self):
                return {}

            def load_state_dict(self, state_dict):
                tensor = (
                    torch.arange(2, dtype=torch.int64, device="cuda")
                    + 1
                    + 2 * dist.get_rank()
                )
                dist.all_reduce(tensor, op=ReduceOp.SUM)

        if self.rank == 0:
            sd = {
                "A": Foo(),
                "B": Bar(),
            }
        else:
            sd = {
                "B": Bar(),
                "A": Foo(),
            }

        DCP.save(sd, checkpoint_id=self.temp_dir)
        DCP.load(sd, checkpoint_id=self.temp_dir)

    @with_temp_dir
    def test_no_dist(self):
        # since comm's are not initialized in this method, `no_dist`
        # is assumed False
        DCP.save({}, checkpoint_id=self.temp_dir)
        DCP.load({}, checkpoint_id=self.temp_dir)

    @with_comms
    @skip_if_lt_x_gpu(4)
    @with_temp_dir
    def test_partial_load(self):
        model, optim = self._create_model(compile=False, model_type=ModelType.NONE)
        _train(model, optim, train_steps=2)

        dist_model, dist_optim = self._create_model(
            compile=False, model_type=ModelType.FSDP
        )
        _train(dist_model, dist_optim, train_steps=2)

        DCP.save(
            {"model": dist_model, "optimizer": dist_optim}, checkpoint_id=self.temp_dir
        )

        dist_model, _ = self._create_model(compile=False, model_type=ModelType.FSDP)
        DCP.load({"model": dist_model}, checkpoint_id=self.temp_dir)

        dist_msd = get_model_state_dict(dist_model)
        model_sd = get_model_state_dict(model)
        self._verify_msd(model_sd, dist_msd)

        # another way
        loaded_model_sd = _load_state_dict_from_keys(
            "model", checkpoint_id=self.temp_dir
        )["model"]
        self._verify_msd(model_sd, loaded_model_sd, offload_to_cpu=True)

        loaded_optim_state = _load_state_dict_from_keys(
            "optimizer.state", checkpoint_id=self.temp_dir
        )["optimizer"]["state"]
        self.assertNotIn("param_groups", loaded_optim_state)
        for k, v in dist_optim.state_dict()["state"].items():
            for optim_key in ["exp_avg", "exp_avg_sq", "step"]:
                self._compare_tensor(
                    loaded_optim_state[k][optim_key], v[optim_key], offload_to_cpu=True
                )

    @with_comms
    @skip_if_lt_x_gpu(4)
    @with_temp_dir
    def test_overwrite(self):
        t1, t2 = torch.randn(10), torch.randn(10)
        DCP.save({"random": t1}, checkpoint_id=self.temp_dir)
        DCP.save(
            {"random": t2},
            storage_writer=DCP.FileSystemWriter(self.temp_dir, overwrite=True),
        )

        sd = {"random": torch.zeros(10)}
        DCP.load(sd, checkpoint_id=self.temp_dir)

        self.assertTrue(torch.allclose(sd["random"], t2))

        with self.assertRaisesRegex(
            CheckpointException, ".*Checkpoint already exists.*"
        ):
            DCP.save(
                {"random": t2},
                storage_writer=DCP.FileSystemWriter(self.temp_dir, overwrite=False),
            )


class TestNoCPU(DTensorTestBase):
    @property
    def backend(self):
        return "nccl"

    @with_comms
    def test_no_cpu(self):
        with self.assertRaisesRegex(
            AssertionError, r"A CPU backend must be enabled for async save;.*?"
        ):
            f = saver.async_save({})
            f.result()


class TestInitStateDict(DTensorTestBase):
    @with_temp_dir
    def test_init_state_dict(self):
        temp_dir = self.temp_dir
        model = TestDummyModel()
        optim = torch.optim.Adam(model.parameters(), lr=0.1)

        state_dict_to_save = {
            "model": get_model_state_dict(model),
            "optimizer": get_optimizer_state_dict(model, optim),
        }
        DCP.save(state_dict_to_save, checkpoint_id=temp_dir)

        torch.manual_seed(0)
        model_2 = TestDummyModel()
        # Changing the learning rate for optimizer, which is not a tensor.
        optim_2 = torch.optim.Adam(model_2.parameters(), lr=0.2)

        msd = get_model_state_dict(model_2)
        osd = get_optimizer_state_dict(model_2, optim_2)

        state_dict_to_load = {"model": msd, "optimizer": osd}
        DCP.load(state_dict_to_load, checkpoint_id=temp_dir)

        # We need to check that the two variables point to the same object in memory,
        # since we claim DCP is in-place loading.
        self.assertTrue(msd is state_dict_to_load["model"])
        self.assertTrue(osd is state_dict_to_load["optimizer"])

        # set_state_dict calls load_state_dict for model and optimizer.
        # so we should see the optim_2.param_groups learning rate is 0.1 instead of 0.2 now.
        set_state_dict(
            model_2,
            optim_2,
            model_state_dict=state_dict_to_load["model"],
            optim_state_dict=state_dict_to_load["optimizer"],
        )
        self.assertEqual(msd, get_model_state_dict(model_2))
        self.assertEqual(osd, get_optimizer_state_dict(model_2, optim_2))
        self.assertEqual(optim_2.param_groups[0]["lr"], 0.1)


instantiate_parametrized_tests(TestE2ESaveAndLoad)
if __name__ == "__main__":
    run_tests()