File: test_dtensor_checkpoint.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (267 lines) | stat: -rw-r--r-- 9,478 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Owner(s): ["oncall: distributed"]
from typing import Dict, Union

import torch
import torch.distributed as dist
import torch.distributed.checkpoint as dist_cp
from torch.distributed._tensor import (
    DeviceMesh,
    distribute_tensor,
    DTensor,
    Replicate,
    Shard,
    zeros,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
    DTensorTestBase,
    skip_if_lt_x_gpu,
    with_comms,
)
from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir


SUBMESH_TENSOR_SIZE = 6


class MyTestModule(torch.nn.Module):
    def __init__(
        self,
        sdt: DTensor,
        rdt: DTensor,
        submesh_sdt: DTensor,
        submesh_rdt: DTensor,
        extra_state: int = 1,
        extra_state_tensor: torch.Tensor = torch.zeros(1),
    ) -> None:
        super().__init__()
        self.sdt = torch.nn.Parameter(sdt)
        self.rdt = torch.nn.Parameter(rdt)
        self.submesh_sdt = torch.nn.Parameter(submesh_sdt)
        self.submesh_rdt = torch.nn.Parameter(submesh_rdt)
        self._extra_state = extra_state
        self._extra_state_tensor = extra_state_tensor

    @property
    def extra_state(self) -> int:
        return self._extra_state

    @extra_state.setter
    def extra_state(self, new_extra_state: int) -> None:
        self._extra_state = new_extra_state

    @property
    def extra_state_tensor(self) -> torch.Tensor:
        return self._extra_state_tensor

    @extra_state_tensor.setter
    def extra_state_tensor(self, new_extra_state_tensor: torch.Tensor) -> None:
        self._extra_state_tensor = new_extra_state_tensor

    def get_extra_state(self) -> Dict[str, Union[int, torch._tensor.Tensor]]:
        return {
            "extra_state": self._extra_state,
            "extra_state_tensor": self._extra_state_tensor,
        }

    def set_extra_state(
        self, state: Dict[str, Union[int, torch._tensor.Tensor]]
    ) -> None:
        self._extra_state = state["extra_state"]  # pyre-ignore[8]
        self._extra_state_tensor = state["extra_state_tensor"]  # pyre-ignore[8]


class DTensorPlanner(DTensorTestBase):
    def create_dtensor_model(
        self,
        tensor_to_shard: torch.tensor,
        tensor_to_replicate: torch.tensor,
    ) -> torch.nn.Module:
        mesh = DeviceMesh(
            device_type=self.device_type,
            mesh=range(dist.get_world_size()),
        )
        sharded_dt = distribute_tensor(tensor_to_shard, mesh, placements=[Shard(0)])
        replicated_dt = distribute_tensor(
            tensor_to_replicate, mesh, placements=[Replicate()]
        )

        # Only even rank will be part of the mesh.
        submesh = DeviceMesh(
            device_type=self.device_type,
            mesh=[i for i in range(dist.get_world_size()) if i % 2 == 0],
        )
        submesh_tensor_size = [SUBMESH_TENSOR_SIZE]
        submesh_sharded_dt = zeros(
            submesh_tensor_size,
            device_mesh=submesh,
            placements=[Shard(0)],
        )
        submesh_replicated_dt = zeros(
            submesh_tensor_size, device_mesh=submesh, placements=[Replicate()]
        )

        model = MyTestModule(
            sharded_dt,
            replicated_dt,
            submesh_sharded_dt,
            submesh_replicated_dt,
        ).cuda()

        return (
            model,
            sharded_dt,
            replicated_dt,
        )

    @with_comms
    @with_temp_dir
    @skip_if_lt_x_gpu(2)
    def test_distributed_tensor_planner(self) -> None:
        CHECKPOINT_DIR = self.temp_dir

        local_tensor = torch.arange(0, 4, dtype=torch.float32)
        local_tensor_2 = torch.arange(4, 8, dtype=torch.float32)
        (model, sharded_dt, replicated_dt) = self.create_dtensor_model(
            local_tensor, local_tensor_2
        )
        state_dict = model.state_dict()

        """
        When the model is initialized, the state_dict on rank 0 are as follows when there are 4 GPUs.
        rank 0:
            OrderedDict(
                [
                    (
                        'rdt',
                        DTensor(
                            local_tensor=tensor([4., 5., 6., 7.], device='cuda:0'),
                            device_mesh=DeviceMesh:([0, 1, 2, 3]),
                            placements=[Replicate()]
                        )
                    ),
                    (
                        'sdt',
                        DTensor(
                            local_tensor=tensor([0.], device='cuda:0'),
                            device_mesh=DeviceMesh:([0, 1, 2, 3]),
                            placements=[Shard(dim=0)])
                        ),
                    ),
                    (
                        'submesh_sdt',
                        DTensor(
                            local_tensor=tensor([8., 9.], device='cuda:0'),
                            device_mesh=DeviceMesh:([0, 2]),
                            placements=[Shard(dim=0)]
                        ),
                    ),
                    (
                        'submesh_rdt',
                        DTensor(
                            local_tensor=tensor([12., 13., 14., 15.], device='cuda:0'),
                            device_mesh=DeviceMesh:([0, 2]),
                            placements=[Replicate()]
                        )
                    ),
                    (
                        '_extra_state',
                        {'extra_state': 1, 'extra_state_tensor': tensor([0.])}
                    )
                ]
            )
        """

        dist_cp.save(
            state_dict=state_dict,
            storage_writer=dist_cp.FileSystemWriter(path=CHECKPOINT_DIR),
            planner=dist_cp.DefaultSavePlanner(),
        )
        model, _, _ = self.create_dtensor_model(local_tensor * 10, local_tensor_2 * 10)
        state_dict = model.state_dict()

        """
        When the model is re-initialized, we have changed the params in state_dict.
        The updated values are as follows, when there are 4 GPUs:
        rank 0:
            OrderedDict(
                [
                    (
                        'rdt',
                        DTensor(
                            local_tensor=tensor([40., 50., 60., 70.], device='cuda:0'),
                            device_mesh=DeviceMesh:([0, 1, 2, 3]),
                            placements=[Replicate()],
                        )
                    ),
                    (
                        'sdt',
                        DTensor(
                            local_tensor=tensor([0.], device='cuda:0'),
                            device_mesh=DeviceMesh:([0, 1, 2, 3]),
                            placements=[Shard(dim=0)],
                        )
                    ),
                    (
                        'submesh_sdt',
                        DTensor(
                            local_tensor=tensor([80., 90.], device='cuda:0'),
                            device_mesh=DeviceMesh:([0, 2]),
                            placements=[Shard(dim=0)]
                        )
                    ),
                    ('submesh_rdt',
                        DTensor(
                            local_tensor=tensor([120., 130., 140., 150.], device='cuda:0'),
                            device_mesh=DeviceMesh:([0, 2]),
                            placements=[Replicate()]
                        )
                    ),
                    (
                        '_extra_state', {'extra_state': 10, 'extra_state_tensor': tensor([10.])}
                    )
                ]
            )
        """

        dist_cp.load(
            state_dict=state_dict,
            storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR),
            planner=dist_cp.DefaultLoadPlanner(),
        )

        """
        After loading the model from the checkpoint, we want to make sure that the values in state_dict
        match the values that are originally saved to the checkpoint.
        """
        for k, v in state_dict.items():
            if k == "sdt":
                self.assertEqual(sharded_dt.to_local(), v.to_local())
            if k == "rdt":
                self.assertEqual(replicated_dt.to_local(), v.to_local())

            if k == "submesh_sdt":
                if self.rank % 2 == 0:
                    shard_size = int(SUBMESH_TENSOR_SIZE / v.device_mesh.size())
                    self.assertEqual(v.to_local().size(), torch.Size([shard_size]))
                    self.assertEqual(v.to_local(), torch.zeros([shard_size]))
                else:
                    self.assertEqual(v.to_local().size(), torch.Size([0]))
                    self.assertEqual(v.to_local(), torch.tensor([]))

            if k == "submesh_rdt":
                if self.rank % 2 == 0:
                    shard_size = SUBMESH_TENSOR_SIZE
                    self.assertEqual(v.to_local().size(), torch.Size([shard_size]))
                    self.assertEqual(v.to_local(), torch.zeros([shard_size]))
                else:
                    self.assertEqual(v.to_local().size(), torch.Size([0]))
                    self.assertEqual(v.to_local(), torch.tensor([]))

            if k == "_extra_state":
                self.assertEqual(1, v["extra_state"])
                self.assertEqual(torch.tensor([0.0]), v["extra_state_tensor"])


if __name__ == "__main__":
    run_tests()