1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
# Owner(s): ["oncall: distributed"]
from typing import Dict, Union
import torch
import torch.distributed as dist
import torch.distributed.checkpoint as dist_cp
from torch.distributed._tensor import (
DeviceMesh,
distribute_tensor,
DTensor,
Replicate,
Shard,
zeros,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir
SUBMESH_TENSOR_SIZE = 6
class MyTestModule(torch.nn.Module):
def __init__(
self,
sdt: DTensor,
rdt: DTensor,
submesh_sdt: DTensor,
submesh_rdt: DTensor,
extra_state: int = 1,
extra_state_tensor: torch.Tensor = torch.zeros(1),
) -> None:
super().__init__()
self.sdt = torch.nn.Parameter(sdt)
self.rdt = torch.nn.Parameter(rdt)
self.submesh_sdt = torch.nn.Parameter(submesh_sdt)
self.submesh_rdt = torch.nn.Parameter(submesh_rdt)
self._extra_state = extra_state
self._extra_state_tensor = extra_state_tensor
@property
def extra_state(self) -> int:
return self._extra_state
@extra_state.setter
def extra_state(self, new_extra_state: int) -> None:
self._extra_state = new_extra_state
@property
def extra_state_tensor(self) -> torch.Tensor:
return self._extra_state_tensor
@extra_state_tensor.setter
def extra_state_tensor(self, new_extra_state_tensor: torch.Tensor) -> None:
self._extra_state_tensor = new_extra_state_tensor
def get_extra_state(self) -> Dict[str, Union[int, torch._tensor.Tensor]]:
return {
"extra_state": self._extra_state,
"extra_state_tensor": self._extra_state_tensor,
}
def set_extra_state(
self, state: Dict[str, Union[int, torch._tensor.Tensor]]
) -> None:
self._extra_state = state["extra_state"] # pyre-ignore[8]
self._extra_state_tensor = state["extra_state_tensor"] # pyre-ignore[8]
class DTensorPlanner(DTensorTestBase):
def create_dtensor_model(
self,
tensor_to_shard: torch.tensor,
tensor_to_replicate: torch.tensor,
) -> torch.nn.Module:
mesh = DeviceMesh(
device_type=self.device_type,
mesh=range(dist.get_world_size()),
)
sharded_dt = distribute_tensor(tensor_to_shard, mesh, placements=[Shard(0)])
replicated_dt = distribute_tensor(
tensor_to_replicate, mesh, placements=[Replicate()]
)
# Only even rank will be part of the mesh.
submesh = DeviceMesh(
device_type=self.device_type,
mesh=[i for i in range(dist.get_world_size()) if i % 2 == 0],
)
submesh_tensor_size = [SUBMESH_TENSOR_SIZE]
submesh_sharded_dt = zeros(
submesh_tensor_size,
device_mesh=submesh,
placements=[Shard(0)],
)
submesh_replicated_dt = zeros(
submesh_tensor_size, device_mesh=submesh, placements=[Replicate()]
)
model = MyTestModule(
sharded_dt,
replicated_dt,
submesh_sharded_dt,
submesh_replicated_dt,
).cuda()
return (
model,
sharded_dt,
replicated_dt,
)
@with_comms
@with_temp_dir
@skip_if_lt_x_gpu(2)
def test_distributed_tensor_planner(self) -> None:
CHECKPOINT_DIR = self.temp_dir
local_tensor = torch.arange(0, 4, dtype=torch.float32)
local_tensor_2 = torch.arange(4, 8, dtype=torch.float32)
(model, sharded_dt, replicated_dt) = self.create_dtensor_model(
local_tensor, local_tensor_2
)
state_dict = model.state_dict()
"""
When the model is initialized, the state_dict on rank 0 are as follows when there are 4 GPUs.
rank 0:
OrderedDict(
[
(
'rdt',
DTensor(
local_tensor=tensor([4., 5., 6., 7.], device='cuda:0'),
device_mesh=DeviceMesh:([0, 1, 2, 3]),
placements=[Replicate()]
)
),
(
'sdt',
DTensor(
local_tensor=tensor([0.], device='cuda:0'),
device_mesh=DeviceMesh:([0, 1, 2, 3]),
placements=[Shard(dim=0)])
),
),
(
'submesh_sdt',
DTensor(
local_tensor=tensor([8., 9.], device='cuda:0'),
device_mesh=DeviceMesh:([0, 2]),
placements=[Shard(dim=0)]
),
),
(
'submesh_rdt',
DTensor(
local_tensor=tensor([12., 13., 14., 15.], device='cuda:0'),
device_mesh=DeviceMesh:([0, 2]),
placements=[Replicate()]
)
),
(
'_extra_state',
{'extra_state': 1, 'extra_state_tensor': tensor([0.])}
)
]
)
"""
dist_cp.save(
state_dict=state_dict,
storage_writer=dist_cp.FileSystemWriter(path=CHECKPOINT_DIR),
planner=dist_cp.DefaultSavePlanner(),
)
model, _, _ = self.create_dtensor_model(local_tensor * 10, local_tensor_2 * 10)
state_dict = model.state_dict()
"""
When the model is re-initialized, we have changed the params in state_dict.
The updated values are as follows, when there are 4 GPUs:
rank 0:
OrderedDict(
[
(
'rdt',
DTensor(
local_tensor=tensor([40., 50., 60., 70.], device='cuda:0'),
device_mesh=DeviceMesh:([0, 1, 2, 3]),
placements=[Replicate()],
)
),
(
'sdt',
DTensor(
local_tensor=tensor([0.], device='cuda:0'),
device_mesh=DeviceMesh:([0, 1, 2, 3]),
placements=[Shard(dim=0)],
)
),
(
'submesh_sdt',
DTensor(
local_tensor=tensor([80., 90.], device='cuda:0'),
device_mesh=DeviceMesh:([0, 2]),
placements=[Shard(dim=0)]
)
),
('submesh_rdt',
DTensor(
local_tensor=tensor([120., 130., 140., 150.], device='cuda:0'),
device_mesh=DeviceMesh:([0, 2]),
placements=[Replicate()]
)
),
(
'_extra_state', {'extra_state': 10, 'extra_state_tensor': tensor([10.])}
)
]
)
"""
dist_cp.load(
state_dict=state_dict,
storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR),
planner=dist_cp.DefaultLoadPlanner(),
)
"""
After loading the model from the checkpoint, we want to make sure that the values in state_dict
match the values that are originally saved to the checkpoint.
"""
for k, v in state_dict.items():
if k == "sdt":
self.assertEqual(sharded_dt.to_local(), v.to_local())
if k == "rdt":
self.assertEqual(replicated_dt.to_local(), v.to_local())
if k == "submesh_sdt":
if self.rank % 2 == 0:
shard_size = int(SUBMESH_TENSOR_SIZE / v.device_mesh.size())
self.assertEqual(v.to_local().size(), torch.Size([shard_size]))
self.assertEqual(v.to_local(), torch.zeros([shard_size]))
else:
self.assertEqual(v.to_local().size(), torch.Size([0]))
self.assertEqual(v.to_local(), torch.tensor([]))
if k == "submesh_rdt":
if self.rank % 2 == 0:
shard_size = SUBMESH_TENSOR_SIZE
self.assertEqual(v.to_local().size(), torch.Size([shard_size]))
self.assertEqual(v.to_local(), torch.zeros([shard_size]))
else:
self.assertEqual(v.to_local().size(), torch.Size([0]))
self.assertEqual(v.to_local(), torch.tensor([]))
if k == "_extra_state":
self.assertEqual(1, v["extra_state"])
self.assertEqual(torch.tensor([0.0]), v["extra_state_tensor"])
if __name__ == "__main__":
run_tests()
|