File: test_hsdp_checkpoint.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (209 lines) | stat: -rw-r--r-- 7,550 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Owner(s): ["oncall: distributed"]
from copy import deepcopy

import torch
import torch.distributed.checkpoint as dist_cp
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._tensor import init_device_mesh, Replicate
from torch.distributed.checkpoint.default_planner import (
    DefaultLoadPlanner,
    DefaultSavePlanner,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import (
    ShardingStrategy,
    StateDictType,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
    DTensorTestBase,
    with_comms,
)
from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir


class SimpleModel(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.net1 = nn.Linear(5, 8)
        self.relu = nn.ReLU()
        self.net2 = nn.Linear(8, 4)
        self.net3 = nn.Linear(4, 12)

    def forward(self, x):
        x = F.relu(self.net1(x))
        x = F.relu(self.net2(x))
        x = F.relu(self.net3(x))
        return x

    def get_input(self):
        return torch.rand(4, 5, device="cuda")


class SimpleModelUneven(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.net1 = nn.Linear(5, 10)
        self.relu = nn.ReLU()
        self.net2 = nn.Linear(10, 15)
        self.net3 = nn.Linear(15, 30)
        self.net4 = nn.Linear(30, 5)

    def forward(self, x):
        x = F.relu(self.net1(x))
        x = F.relu(self.net2(x))
        x = F.relu(self.net3(x))
        x = F.relu(self.net4(x))
        return x

    def get_input(self):
        return torch.rand(4, 5, device="cuda")


class TestHSDPCheckpoint(DTensorTestBase):
    @property
    def backend(self):
        return "cpu:gloo,cuda:nccl"

    @with_comms
    @skip_if_lt_x_gpu(4)
    @with_temp_dir
    @parametrize("is_even_sharded_model", [True, False])
    def test_hsdp_checkpoint(self, is_even_sharded_model) -> None:
        CHECKPOINT_DIR = self.temp_dir
        simple_model = SimpleModel if is_even_sharded_model else SimpleModelUneven

        mesh_2d = init_device_mesh(self.device_type, (2, self.world_size // 2))
        model = FSDP(
            simple_model().cuda(),
            sharding_strategy=ShardingStrategy.HYBRID_SHARD,
            device_mesh=mesh_2d,
        )
        optim = torch.optim.Adam(model.parameters(), lr=0.1)

        FSDP.set_state_dict_type(
            model,
            StateDictType.SHARDED_STATE_DICT,
        )
        state_dict = {"model": model.state_dict()}
        state_dict_to_save = deepcopy(state_dict)

        dist_cp.save(
            state_dict=state_dict_to_save,
            storage_writer=dist_cp.FileSystemWriter(CHECKPOINT_DIR),
            planner=DefaultSavePlanner(),
        )

        # Update the parameters so current model state_dict now be different from state_dict_to_save.
        model(model.get_input()).sum().backward()
        optim.step()

        # At this point, the current state dict is different from state_dict_to_save.
        for (k1, v1), (k2, v2) in zip(
            state_dict_to_save["model"].items(), model.state_dict().items()
        ):
            self.assertEqual(k1, k2)
            self.assertEqual(v1.device_mesh, v2.device_mesh)
            self.assertEqual(v1.placements, v2.placements)
            self.assertNotEqual(v1.to_local(), v2.to_local())

        dist_cp.load(
            state_dict=state_dict_to_save,
            storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR),
            planner=DefaultLoadPlanner(),
        )
        model.load_state_dict(state_dict_to_save["model"])

        state_dict_after_load = model.state_dict()
        # After loading, the current model state dict should be the same as state_dict_to_save.
        for (k1, v1), (k2, v2) in zip(
            state_dict_to_save["model"].items(), model.state_dict().items()
        ):
            self.assertEqual(k1, k2)
            self.assertEqual(v1.device_mesh, v2.device_mesh)
            self.assertEqual(v1.placements, v2.placements)
            self.assertEqual(v1.to_local(), v2.to_local())

    @with_comms
    @skip_if_lt_x_gpu(4)
    @with_temp_dir
    @parametrize("is_even_sharded_model", [True, False])
    def test_hsdp_fsdp_checkpoint_conversion(self, is_even_sharded_model) -> None:
        CHECKPOINT_DIR = self.temp_dir
        simple_model = SimpleModel if is_even_sharded_model else SimpleModelUneven

        # save the hsdp model state_dict
        mesh_2d = init_device_mesh(self.device_type, (2, self.world_size // 2))
        hsdp_model = FSDP(
            simple_model().cuda(),
            sharding_strategy=ShardingStrategy.HYBRID_SHARD,
            device_mesh=mesh_2d,
        )
        FSDP.set_state_dict_type(
            hsdp_model,
            StateDictType.SHARDED_STATE_DICT,
        )
        hsdp_state_dict = {"model": hsdp_model.state_dict()}
        dist_cp.save_state_dict(
            state_dict=hsdp_state_dict,
            storage_writer=dist_cp.FileSystemWriter(CHECKPOINT_DIR),
            planner=DefaultSavePlanner(),
        )

        # initialize a fsdp model to load checkpoint into
        mesh_1d = init_device_mesh(self.device_type, (self.world_size,))
        fsdp_model = FSDP(
            simple_model().cuda(),
            device_mesh=mesh_1d,
        )
        FSDP.set_state_dict_type(
            fsdp_model,
            StateDictType.SHARDED_STATE_DICT,
        )
        fsdp_state_dict = {"model": fsdp_model.state_dict()}

        # at this point, the hsdp model parameters are different from fsdp model parameters.
        for (k1, v1), (k2, v2) in zip(
            hsdp_state_dict["model"].items(), fsdp_state_dict["model"].items()
        ):
            self.assertEqual(k1, k2)
            self.assertNotEqual(v1.device_mesh, v2.device_mesh)
            self.assertNotEqual(v1.placements, v2.placements)
            v1_all_gather = v1.redistribute(
                mesh_2d, placements=(Replicate(), Replicate())
            )
            v2_all_gather = v2.redistribute(mesh_1d, placements=(Replicate(),))
            self.assertNotEqual(v1_all_gather.to_local(), v2_all_gather.to_local())

        # load the fsdp state_dict from storage
        dist_cp.load_state_dict(
            state_dict=fsdp_state_dict,
            storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR),
            planner=DefaultLoadPlanner(),
        )
        fsdp_model.load_state_dict(fsdp_state_dict["model"])

        state_dict_after_load = fsdp_model.state_dict()
        # After loading, the current model state dict should be the same as hsdp_state_dict.
        for (k1, v1), (k2, v2) in zip(
            hsdp_state_dict["model"].items(), state_dict_after_load.items()
        ):
            self.assertEqual(k1, k2)
            self.assertNotEqual(v1.device_mesh, v2.device_mesh)
            self.assertNotEqual(v1.placements, v2.placements)
            v1_all_gather = v1.redistribute(
                mesh_2d, placements=(Replicate(), Replicate())
            )
            v2_all_gather = v2.redistribute(mesh_1d, placements=(Replicate(),))
            self.assertEqual(v1_all_gather.to_local(), v2_all_gather.to_local())


instantiate_parametrized_tests(TestHSDPCheckpoint)
if __name__ == "__main__":
    run_tests()