1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
|
# Owner(s): ["oncall: distributed"]
import copy
import functools
import sys
from itertools import chain
from typing import Callable, Tuple, Type, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._tensor import DTensor, init_device_mesh
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
)
from torch.distributed.checkpoint import state_dict as ptd_state_dict
from torch.distributed.checkpoint.state_dict import (
_patch_model_state_dict,
_patch_optimizer_state_dict,
get_model_state_dict,
get_optimizer_state_dict,
get_state_dict,
set_model_state_dict,
set_optimizer_state_dict,
StateDictOptions,
)
from torch.distributed.fsdp import (
fully_shard,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import Optimizer
from torch.testing._internal.common_dist_composable import (
CompositeParamModel,
UnitModule,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MultiProcessTestCase,
with_comms,
)
from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin
from torch.utils._pytree import tree_all, tree_all_only
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
class TestStateDict(DTensorTestBase, VerifyStateDictMixin):
"""Tests state_dict and load_state_dict"""
@property
def world_size(self) -> int:
return min(4, torch.cuda.device_count())
def _test_save_load(
self,
init_model_optim: Callable,
test_frozen: bool = False,
) -> None:
options = StateDictOptions(ignore_frozen_params=test_frozen)
# Initialize original model and distributed model.
model, optim, copy_optim, dist_model, dist_optim = init_model_optim()
# Train 10 steps.
_dist_optim = [dist_optim] if not isinstance(dist_optim, list) else dist_optim
for i in range(10):
optim.zero_grad()
for d_optim in _dist_optim:
d_optim.zero_grad()
batch = torch.rand(8, 100, device="cuda")
model(batch).sum().backward()
dist_model(batch).sum().backward()
optim.step()
for d_optim in _dist_optim:
d_optim.step()
# Get the state_dict, and compare the result
msd = model.state_dict()
osd = optim.state_dict()
dist_msd, dist_osd = get_state_dict(
dist_model, optimizers=dist_optim, options=options
)
self._verify_msd(msd, dist_msd, options)
self._verify_osd_by_load(model, optim, copy_optim, dist_osd)
self._verify_osd(model, optim, osd, dist_osd)
# Initialize a completely new model to simulate checkpoint load.
_, _, _, dist_model, dist_optim = init_model_optim()
# Simulate DCP distributed load. We need to first get the state_dict and
# pass them to DCP to load the saved state_dict from the storage.
# Then finally we can call set_state_dict().
if not isinstance(dist_optim, list):
dist_optim = [dist_optim]
if test_frozen:
# We won't be able to load the partial state_dict back.
return
# Since we already have the state_dict saved before, no need to call DCP.
# We can directly load them back. This asser is to ensure that optimizer
# state storage are initialized.
# self.assertEqual(len(curr_dist_osd[STATE]), len(dist_osd[STATE]))
set_model_state_dict(
dist_model,
model_state_dict=dist_msd,
options=options,
)
set_optimizer_state_dict(
dist_model,
optimizers=dist_optim,
optim_state_dict=dist_osd,
options=options,
)
# Check if the new state_dict are the same
dist_msd, dist_osd = get_state_dict(
dist_model, optimizers=dist_optim, options=options
)
self._verify_msd(msd, dist_msd, options)
# TODO: Ditto
# self._verify_osd_by_load(model, optim, copy_optim, dist_osd)
self._verify_osd(model, optim, osd, dist_osd)
# Test _patch_model_state_dict, and _patch_optimizer_state_dict
_patch_model_state_dict(dist_model, options=options)
_patch_optimizer_state_dict(dist_model, optimizers=dist_optim, options=options)
dist_msd = dist_model.state_dict()
dist_osd = dist_optim[0].state_dict()
self._verify_msd(msd, dist_msd, options)
self._verify_osd_by_load(model, optim, copy_optim, dist_osd)
self._verify_osd(model, optim, osd, dist_osd)
def _test_fsdp(
self,
*,
use_orig_params: bool,
use_dtensor: bool,
wrapping: Tuple[nn.Module] = (),
compile_model: bool = False,
optimizer_class: Type[Optimizer],
) -> None:
if not use_orig_params:
return
# TODO: remove this return after we complete the composable API side change for device_mesh
if use_dtensor:
return
def init_model_optim():
if use_dtensor:
device_mesh = init_device_mesh("cuda", (self.world_size,))
orig_model = CompositeParamModel(device=torch.device("cuda"))
orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True)
copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True)
if wrapping:
strategy = set(wrapping)
else:
strategy = {UnitModule}
if use_dtensor:
device_mesh = init_device_mesh("cuda", (self.world_size,))
dist_model = FSDP(
copy.deepcopy(orig_model),
auto_wrap_policy=ModuleWrapPolicy(strategy),
use_orig_params=use_orig_params,
device_mesh=device_mesh,
)
else:
dist_model = FSDP(
copy.deepcopy(orig_model),
auto_wrap_policy=ModuleWrapPolicy(strategy),
use_orig_params=use_orig_params,
)
if compile_model:
dist_model = torch.compile(dist_model)
dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4, foreach=True)
return orig_model, orig_optim, copy_optim, dist_model, dist_optim
self._test_save_load(init_model_optim)
@with_comms
@skip_if_lt_x_gpu(2)
def test_fsdp(self) -> None:
self.run_subtests(
{
"use_orig_params": [True, False],
"use_dtensor": [True, False],
"wrapping": [(), (nn.Linear, UnitModule)],
"optimizer_class": [
torch.optim.Adam,
torch.optim.AdamW,
torch.optim.SGD,
],
},
self._test_fsdp,
)
@with_comms
@skip_if_lt_x_gpu(2)
def test_compiled_fsdp(self) -> None:
self.run_subtests(
{
"use_orig_params": [True],
"use_dtensor": [False],
"wrapping": [()],
"optimizer_class": [torch.optim.Adam, torch.optim.AdamW],
},
self._test_fsdp,
)
def _test_fsdp2(
self,
*,
reshard_after_forward: Union[bool, int],
optimizer_class: Type[Optimizer],
compile_model: bool,
foreach: bool = True,
):
def init_model_optim():
orig_model = CompositeParamModel(device=torch.device("cuda"))
orig_optim = optimizer_class(
orig_model.parameters(), lr=1e-4, foreach=foreach
)
copy_optim = optimizer_class(
orig_model.parameters(), lr=1e-4, foreach=foreach
)
dist_model = fully_shard(
copy.deepcopy(orig_model),
reshard_after_forward=reshard_after_forward,
)
if compile_model:
dist_model = torch.compile(dist_model)
dist_optim = optimizer_class(
dist_model.parameters(), lr=1e-4, foreach=foreach
)
return orig_model, orig_optim, copy_optim, dist_model, dist_optim
self._test_save_load(init_model_optim)
@with_comms
@skip_if_lt_x_gpu(2)
def test_fsdp2(self) -> None:
self.run_subtests(
{
"reshard_after_forward": [True, False],
"optimizer_class": [torch.optim.Adam, torch.optim.AdamW],
"compile_model": [True, False],
},
self._test_fsdp2,
)
def _test_ddp(self, use_composable: bool, optimizer_class: Type[Optimizer]) -> None:
def init_model_optim():
orig_model = CompositeParamModel(device=torch.device("cuda"))
orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
if use_composable:
dist_model = replicate(copy.deepcopy(orig_model))
else:
dist_model = DDP(copy.deepcopy(orig_model))
dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4)
return orig_model, orig_optim, copy_optim, dist_model, dist_optim
self._test_save_load(init_model_optim)
@with_comms
@skip_if_lt_x_gpu(2)
def test_ddp(self) -> None:
self.run_subtests(
{
"use_composable": [True, False],
"optimizer_class": [
torch.optim.Adam,
torch.optim.AdamW,
torch.optim.SGD,
],
},
self._test_ddp,
)
def _test_fsdp_ddp(
self,
optimizer_class: Type[Optimizer],
optim_in_backward: bool = False,
test_frozen: bool = False,
) -> None:
def init_model_optim():
orig_model = CompositeParamModel(device=torch.device("cuda"))
if test_frozen:
for param in chain(
orig_model.u1.parameters(), orig_model.u2.parameters()
):
param.requires_grad = False
orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
dist_model = copy.deepcopy(orig_model)
dist_model.l = DDP(dist_model.l)
dist_model = FSDP(
copy.deepcopy(orig_model),
auto_wrap_policy=ModuleWrapPolicy({UnitModule}),
use_orig_params=optim_in_backward,
ignored_modules=[dist_model.l],
)
if optim_in_backward:
_apply_optimizer_in_backward(
optimizer_class, dist_model.parameters(), {"lr": 1e-4}
)
dist_optim = [
p._in_backward_optimizers[0] for p in dist_model.parameters()
]
else:
dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4)
return orig_model, orig_optim, copy_optim, dist_model, dist_optim
self._test_save_load(init_model_optim, test_frozen)
@with_comms
@skip_if_lt_x_gpu(2)
def test_fsdp_ddp(self) -> None:
self.run_subtests(
{
"optimizer_class": [torch.optim.Adam, torch.optim.AdamW],
},
self._test_fsdp_ddp,
)
def _test_single_gpu(self, optimizer_class: Type[Optimizer]) -> None:
def init_model_optim():
orig_model = CompositeParamModel(device=torch.device("cuda"))
orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
model_copy = copy.deepcopy(orig_model)
optim_copy = optimizer_class(model_copy.parameters(), lr=1e-4)
return orig_model, orig_optim, copy_optim, model_copy, optim_copy
self._test_save_load(init_model_optim)
@with_comms
@skip_if_lt_x_gpu(1)
def test_single_gpu(self) -> None:
self.run_subtests(
{"optimizer_class": [torch.optim.Adam, torch.optim.AdamW]},
self._test_single_gpu,
)
@with_comms
@skip_if_lt_x_gpu(1)
def test_strict(self) -> None:
model = CompositeParamModel(device=torch.device("cuda"))
model_state_dict = get_model_state_dict(model)
key = next(iter(model_state_dict.keys()))
model_state_dict["abc"] = torch.zeros(10)
with self.assertRaisesRegex(RuntimeError, "Unexpected key"):
set_model_state_dict(model, model_state_dict=model_state_dict)
model_state_dict.pop(key)
incompatible_keys = set_model_state_dict(
model,
model_state_dict=model_state_dict,
options=StateDictOptions(strict=False),
)
self.assertEqual(incompatible_keys.missing_keys, [key])
self.assertEqual(incompatible_keys.unexpected_keys, ["abc"])
model_state_dict.pop("abc")
with self.assertRaisesRegex(RuntimeError, "Missing key"):
set_model_state_dict(model, model_state_dict=model_state_dict)
def _test_cpu_offload_full_state_dict(
self, optimizer_class: Type[Optimizer]
) -> None:
orig_model = CompositeParamModel(device=torch.device("cuda"))
device_mesh = init_device_mesh("cuda", (self.world_size,))
dist_model = FSDP(
copy.deepcopy(orig_model),
auto_wrap_policy=ModuleWrapPolicy({UnitModule}),
use_orig_params=True,
device_mesh=device_mesh,
)
dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4)
mst, ost = get_state_dict(
dist_model,
dist_optim,
options=StateDictOptions(cpu_offload=True),
)
cpu_device = torch.device("cpu")
def is_cpu(v):
if isinstance(v, DTensor):
return v.device == cpu_device
elif isinstance(v, ShardedTensor):
shards = v.local_shards()
if not shards:
return True
return shards[0].tensor.device == cpu_device
else:
return v.device == cpu_device
self.assertTrue(
tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, mst)
)
self.assertTrue(
tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, ost)
)
mst, ost = get_state_dict(
dist_model, dist_optim, options=StateDictOptions(full_state_dict=True)
)
self.assertTrue(
tree_all(lambda v: not isinstance(v, (DTensor, ShardedTensor)), mst)
)
self.assertTrue(
tree_all(lambda v: not isinstance(v, (DTensor, ShardedTensor)), ost)
)
mst, ost = get_state_dict(
dist_model,
dist_optim,
options=StateDictOptions(full_state_dict=True, cpu_offload=True),
)
if self.rank == 0:
self.assertTrue(
tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, mst)
)
self.assertTrue(
tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, ost)
)
else:
self.assertEqual(mst, {})
self.assertEqual(ost, {})
@with_comms
@skip_if_lt_x_gpu(2)
def test_cpu_offload_full_state_dict(self) -> None:
self.run_subtests(
{"optimizer_class": [torch.optim.Adam, torch.optim.AdamW]},
self._test_cpu_offload_full_state_dict,
)
@with_comms
@skip_if_lt_x_gpu(1)
def test_activation_ckpt_fqns_ddp(self) -> None:
"""Tests that activation checkpointing prefixes are removed from module names"""
model = CompositeParamModel(device=torch.device("cuda"))
original_keys = get_model_state_dict(model).keys()
apply_activation_checkpointing(model)
model = DDP(model)
new_keys = get_model_state_dict(model).keys()
self.assertEqual(original_keys, new_keys)
@with_comms
@skip_if_lt_x_gpu(1)
def test_activation_ckpt_fqns_fsdp1(self) -> None:
self.run_subtests(
{"use_orig_params": [True, False]},
self._test_activation_ckpt_fqns_fsdp1,
)
def _test_activation_ckpt_fqns_fsdp1(self, use_orig_params: bool) -> None:
"""Tests that activation checkpointing prefixes are removed from module names"""
model = CompositeParamModel(device=torch.device("cuda"))
original_keys = get_model_state_dict(model).keys()
apply_activation_checkpointing(model)
model = FSDP(model, use_orig_params=use_orig_params)
new_keys = get_model_state_dict(model).keys()
self.assertEqual(original_keys, new_keys)
@with_comms
@skip_if_lt_x_gpu(1)
def test_extra_state(self) -> None:
model = CompositeParamModel(device=torch.device("cuda"))
def get_extra_state(self):
return "MyState"
def set_extra_state(self, state):
return
UnitModule.get_extra_state = get_extra_state
UnitModule.set_extra_state = set_extra_state
ddp_model = DDP(copy.deepcopy(model))
set_model_state_dict(ddp_model, get_model_state_dict(ddp_model))
self.assertEqual(model.state_dict()["u1._extra_state"], "MyState")
self.assertEqual(model.state_dict(), get_model_state_dict(ddp_model))
@with_comms
@skip_if_lt_x_gpu(1)
def test_non_persistent_buffers(self) -> None:
model = CompositeParamModel(device=torch.device("cuda"))
model.register_buffer(
"dont_save_me", torch.rand(100, device="cuda"), persistent=False
)
ddp_model = DDP(copy.deepcopy(model))
set_model_state_dict(ddp_model, get_model_state_dict(ddp_model))
self.assertEqual(model.state_dict(), get_model_state_dict(ddp_model))
def _test_broadcast_from_rank0(self, wrapper) -> None:
model = CompositeParamModel(device=torch.device("cuda"))
optim = torch.optim.Adam(model.parameters())
fsdp_model = wrapper(copy.deepcopy(model))
fsdp_optim = torch.optim.Adam(fsdp_model.parameters())
batch = torch.rand(8, 100, device="cuda")
model(batch).sum().backward()
optim.step()
states, optim_states = get_state_dict(model, optim)
fsdp_model(batch).sum().backward()
fsdp_optim.step()
def check(equal):
fsdp_states = get_model_state_dict(
fsdp_model,
options=StateDictOptions(full_state_dict=True),
)
fsdp_optim_states = get_optimizer_state_dict(
fsdp_model,
fsdp_optim,
options=StateDictOptions(full_state_dict=True),
)
if equal:
self.assertEqual(states, fsdp_states)
self.assertEqual(optim_states, fsdp_optim_states)
else:
self.assertNotEqual(states, fsdp_states)
self.assertNotEqual(optim_states, fsdp_optim_states)
check(equal=True)
fsdp_model(batch).sum().backward()
fsdp_optim.step()
check(equal=False)
# Drop the states to simulate loading from rank0
if dist.get_rank() > 0:
load_states = {}
load_states2 = {}
load_optim_states = {}
else:
load_states = copy.deepcopy(states)
load_states2 = copy.deepcopy(states)
load_optim_states = copy.deepcopy(optim_states)
set_model_state_dict(
fsdp_model,
model_state_dict=load_states,
options=StateDictOptions(broadcast_from_rank0=True, full_state_dict=True),
)
set_optimizer_state_dict(
fsdp_model,
fsdp_optim,
optim_state_dict=load_optim_states,
options=StateDictOptions(broadcast_from_rank0=True, full_state_dict=True),
)
check(equal=True)
# Verify the `strict` flag.
load_states = load_states2
if load_states:
key = next(iter(load_states.keys()))
load_states.pop(key)
with self.assertRaisesRegex(RuntimeError, "Missing key"):
set_model_state_dict(
fsdp_model,
model_state_dict=load_states,
options=StateDictOptions(
broadcast_from_rank0=True, full_state_dict=True
),
)
@with_comms
@skip_if_lt_x_gpu(2)
def test_broadcast_from_rank0(self) -> None:
device_mesh = init_device_mesh("cuda", (self.world_size,))
self.run_subtests(
{
"wrapper": [
functools.partial(fully_shard, mesh=device_mesh),
functools.partial(FSDP, device_mesh=device_mesh),
]
},
self._test_broadcast_from_rank0,
)
@with_comms
@skip_if_lt_x_gpu(4)
def test_broadcast_from_rank0_hsdp(self) -> None:
device_mesh = init_device_mesh("cuda", (2, self.world_size // 2))
self.run_subtests(
{
"wrapper": [
functools.partial(
FSDP,
device_mesh=device_mesh,
sharding_strategy=ShardingStrategy.HYBRID_SHARD,
),
]
},
self._test_broadcast_from_rank0,
)
@with_comms
@skip_if_lt_x_gpu(2)
def test_fsdp_root_not_initialized(self) -> None:
# This test verifies that FSDP root is not initialized but we should
# still be able to get the state_dict without errors because
# fsdp_model.state_dict() will trigger the FSDP initialization.
device_mesh = init_device_mesh("cuda", (self.world_size,))
model = CompositeParamModel(device=torch.device("cuda"))
fsdp_model = FSDP(copy.deepcopy(model), device_mesh=device_mesh)
fsdp_optim = torch.optim.Adam(fsdp_model.parameters())
get_model_state_dict(fsdp_model)
get_optimizer_state_dict(fsdp_model, fsdp_optim)
@with_comms
@skip_if_lt_x_gpu(2)
def test_optim_state_dict_param_matching(self) -> None:
# This test verifies parameters between optim and optim_state_dict
# "initial_lr" is added to optim_state_dict, but not to the new optim
# We test whether "initial_lr" appear in optim after
# set_optimizer_state_dict.
device = "cuda"
torch.manual_seed(0)
model = nn.Sequential(
*[nn.Linear(4, 4, device=device, bias=False) for _ in range(2)]
)
for layer in model:
fully_shard(layer)
fully_shard(model)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
torch.optim.lr_scheduler.LambdaLR(
optim, lr_lambda=[lambda epoch: 0.95**epoch]
)
opt_state_dict = ptd_state_dict.get_optimizer_state_dict(
model,
optim,
options=ptd_state_dict.StateDictOptions(
full_state_dict=True, cpu_offload=True
),
)
if dist.get_rank() == 0:
self.assertTrue("initial_lr" in opt_state_dict["param_groups"][0])
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
self.assertTrue("initial_lr" not in optim.param_groups[0])
ptd_state_dict.set_optimizer_state_dict(
model,
optim,
optim_state_dict=opt_state_dict,
options=ptd_state_dict.StateDictOptions(
broadcast_from_rank0=True, full_state_dict=True
),
)
if dist.get_rank() == 0:
self.assertTrue("initial_lr" in optim.param_groups[0])
@with_comms
@skip_if_lt_x_gpu(2)
def test_flattened_osd(self) -> None:
device_mesh = init_device_mesh("cuda", (self.world_size,))
model = CompositeParamModel(device=torch.device("cuda"))
fsdp_model = fully_shard(copy.deepcopy(model), mesh=device_mesh)
fsdp_optim = torch.optim.AdamW(fsdp_model.parameters())
batch = torch.rand(8, 100, device="cuda")
fsdp_model(batch).sum().backward()
fsdp_optim.step()
fsdp_optim.zero_grad()
osd1 = get_optimizer_state_dict(fsdp_model, fsdp_optim)
osd2 = get_optimizer_state_dict(
fsdp_model,
fsdp_optim,
options=StateDictOptions(flatten_optimizer_state_dict=True),
)
fsdp_optim2 = torch.optim.AdamW(fsdp_model.parameters())
set_optimizer_state_dict(
fsdp_model, optimizers=fsdp_optim2, optim_state_dict=osd2
)
self.assertEqual(fsdp_optim.state_dict(), fsdp_optim2.state_dict())
set_optimizer_state_dict(
fsdp_model, optimizers=fsdp_optim2, optim_state_dict=osd1
)
self.assertEqual(fsdp_optim.state_dict(), fsdp_optim2.state_dict())
@with_comms
@skip_if_lt_x_gpu(1)
def test_deprecate_partial(self) -> None:
model = CompositeParamModel(device=torch.device("cuda"))
model_state_dict1 = get_model_state_dict(model)
model_state_dict1 = copy.deepcopy(model_state_dict1)
with self.assertWarnsRegex(
FutureWarning,
"Getting submodules only model/optim state_dict is deprecated",
):
model_state_dict2 = get_model_state_dict(model, submodules={model.l})
model_state_dict2 = copy.deepcopy(model_state_dict2)
with self.assertWarnsRegex(
FutureWarning,
"Getting submodules only model/optim state_dict is deprecated",
):
model_state_dict3 = get_model_state_dict(
model,
submodules={model.l},
options=StateDictOptions(keep_submodule_prefixes=False),
)
model_state_dict3 = copy.deepcopy(model_state_dict3)
self.assertEqual(len(model_state_dict2), 2)
self.assertEqual(len(model_state_dict3), 2)
for key in model_state_dict3.keys():
full_fqn = f"l.{key}"
value1 = model_state_dict1[full_fqn]
value2 = model_state_dict2[full_fqn]
value3 = model_state_dict3[key]
self.assertEqual(value1, value2)
self.assertEqual(value2, value3)
zeros_state_dict = {
k: torch.zeros_like(v) for k, v in model_state_dict1.items()
}
model.load_state_dict(zeros_state_dict)
set_model_state_dict(
model,
model_state_dict=model_state_dict2,
options=StateDictOptions(strict=False),
)
self.assertEqual(model.l.weight, model_state_dict1["l.weight"])
self.assertEqual(model.l.bias, model_state_dict1["l.bias"])
model.load_state_dict(zeros_state_dict)
with self.assertWarnsRegex(FutureWarning, "Passing model_state_dict as a "):
set_model_state_dict(
model,
model_state_dict={model.l: model_state_dict3},
options=StateDictOptions(strict=False),
)
self.assertEqual(model.l.weight, model_state_dict1["l.weight"])
self.assertEqual(model.l.bias, model_state_dict1["l.bias"])
@with_comms
@skip_if_lt_x_gpu(1)
def test_deprecate_fsdp_api(self) -> None:
device_mesh = init_device_mesh("cuda", (self.world_size,))
model = CompositeParamModel(device=torch.device("cuda"))
fsdp_model = FSDP(copy.deepcopy(model), device_mesh=device_mesh)
with self.assertWarnsRegex(
FutureWarning,
r"FSDP.state_dict_type\(\) and FSDP.set_state_dict_type\(\) are being deprecated",
):
with FSDP.state_dict_type(fsdp_model, StateDictType.FULL_STATE_DICT):
fsdp_model.state_dict()
with self.assertRaisesRegex(AssertionError, "FutureWarning not triggered"):
with self.assertWarnsRegex(
FutureWarning,
r"FSDP.state_dict_type\(\) and FSDP.set_state_dict_type\(\) are being deprecated",
):
get_model_state_dict(model)
@with_comms
@skip_if_lt_x_gpu(2)
def test_shared_weight(self):
class TiedEmbeddingModel(nn.Module):
def __init__(self, vocab_size, embedding_dim):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.decoder = nn.Linear(embedding_dim, vocab_size)
self.decoder.weight = self.embedding.weight # Tying weights
def forward(self, input):
input = (input * 10).to(torch.int)
embedded = self.embedding(input)
output = self.decoder(embedded)
return output
def init_model_optim():
device_mesh = init_device_mesh("cuda", (self.world_size,))
orig_model = TiedEmbeddingModel(10000, 300).to(torch.device("cuda"))
orig_optim = torch.optim.AdamW(orig_model.parameters(), lr=1e-4)
copy_optim = torch.optim.AdamW(orig_model.parameters(), lr=1e-4)
dist_model = FSDP(copy.deepcopy(orig_model), device_mesh=device_mesh)
dist_optim = torch.optim.AdamW(dist_model.parameters(), lr=1e-4)
return orig_model, orig_optim, copy_optim, dist_model, dist_optim
self._test_save_load(init_model_optim)
@with_comms
@skip_if_lt_x_gpu(2)
def test_setting_meta_device_model(self) -> None:
# This test verifies that we can set model state dict by a meta device model
torch.manual_seed(0)
with torch.device("meta"):
meta_model = nn.Sequential(*[nn.Linear(4, 4, bias=False) for _ in range(2)])
for layer in meta_model:
fully_shard(layer)
fully_shard(meta_model)
with torch.device("cpu"):
cpu_model = nn.Sequential(*[nn.Linear(4, 4, bias=False) for _ in range(2)])
full_sd = cpu_model.state_dict()
set_model_state_dict(
meta_model,
model_state_dict=full_sd,
options=StateDictOptions(full_state_dict=True, strict=False),
)
meta_model_state_dict = meta_model.state_dict()
cpu_model_state_dict = get_model_state_dict(cpu_model)
for cpu_model_key, cpu_model_value in cpu_model_state_dict.items():
meta_model_value = (
meta_model_state_dict[cpu_model_key]
.full_tensor()
.to(device=cpu_model_value.device)
)
self.assertEqual(cpu_model_value, meta_model_value)
@with_comms
@skip_if_lt_x_gpu(2)
def test_setting_meta_device_model_broadcasting(self) -> None:
# This test verifies that we can set model state dict by a meta device model
# With the correlated changes in state_dict, meta device model should be accepted
# in broadcasting and get copied successfully.
torch.manual_seed(0)
with torch.device("meta"):
meta_model = nn.Sequential(*[nn.Linear(4, 4, bias=False) for _ in range(2)])
for layer in meta_model:
fully_shard(layer)
fully_shard(meta_model)
with torch.device("cpu"):
cpu_model = nn.Sequential(*[nn.Linear(4, 4, bias=False) for _ in range(2)])
full_sd = cpu_model.state_dict()
set_model_state_dict(
meta_model,
model_state_dict=full_sd,
options=StateDictOptions(
broadcast_from_rank0=True, full_state_dict=True, strict=False
),
)
meta_model_state_dict = meta_model.state_dict()
cpu_model_state_dict = get_model_state_dict(cpu_model)
for cpu_model_key, cpu_model_value in cpu_model_state_dict.items():
meta_model_value = (
meta_model_state_dict[cpu_model_key]
.full_tensor()
.to(device=cpu_model_value.device)
)
self.assertEqual(cpu_model_value, meta_model_value)
class TestNoComm(MultiProcessTestCase):
def setUp(self) -> None:
super().setUp()
self._spawn_processes()
@skip_if_lt_x_gpu(1)
def test_no_dist(self) -> None:
model = CompositeParamModel(device=torch.device("cuda"))
optim = torch.optim.AdamW(model.parameters(), lr=1e-4)
self.assertFalse(dist.is_initialized())
msd = get_model_state_dict(
model, options=StateDictOptions(full_state_dict=True, cpu_offload=True)
)
for v in msd.values():
self.assertFalse(v.is_cuda)
self.assertEqual(model.state_dict(), msd)
set_model_state_dict(model, model.state_dict())
osd = get_optimizer_state_dict(
model,
optim,
options=StateDictOptions(full_state_dict=True, cpu_offload=True),
)
set_optimizer_state_dict(model, optim, osd)
set_optimizer_state_dict(model, optim, optim.state_dict())
if __name__ == "__main__":
run_tests()
|