File: test_state_dict.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (907 lines) | stat: -rw-r--r-- 34,316 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
# Owner(s): ["oncall: distributed"]

import copy
import functools
import sys
from itertools import chain
from typing import Callable, Tuple, Type, Union

import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._tensor import DTensor, init_device_mesh
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
    apply_activation_checkpointing,
)
from torch.distributed.checkpoint import state_dict as ptd_state_dict
from torch.distributed.checkpoint.state_dict import (
    _patch_model_state_dict,
    _patch_optimizer_state_dict,
    get_model_state_dict,
    get_optimizer_state_dict,
    get_state_dict,
    set_model_state_dict,
    set_optimizer_state_dict,
    StateDictOptions,
)
from torch.distributed.fsdp import (
    fully_shard,
    FullyShardedDataParallel as FSDP,
    ShardingStrategy,
    StateDictType,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import Optimizer
from torch.testing._internal.common_dist_composable import (
    CompositeParamModel,
    UnitModule,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
from torch.testing._internal.distributed._tensor.common_dtensor import (
    DTensorTestBase,
    MultiProcessTestCase,
    with_comms,
)
from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin
from torch.utils._pytree import tree_all, tree_all_only


if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)

if TEST_WITH_DEV_DBG_ASAN:
    print(
        "Skip dev-asan as torch + multiprocessing spawn have known issues",
        file=sys.stderr,
    )
    sys.exit(0)


class TestStateDict(DTensorTestBase, VerifyStateDictMixin):
    """Tests state_dict and load_state_dict"""

    @property
    def world_size(self) -> int:
        return min(4, torch.cuda.device_count())

    def _test_save_load(
        self,
        init_model_optim: Callable,
        test_frozen: bool = False,
    ) -> None:
        options = StateDictOptions(ignore_frozen_params=test_frozen)
        # Initialize original model and distributed model.
        model, optim, copy_optim, dist_model, dist_optim = init_model_optim()

        # Train 10 steps.
        _dist_optim = [dist_optim] if not isinstance(dist_optim, list) else dist_optim
        for i in range(10):
            optim.zero_grad()
            for d_optim in _dist_optim:
                d_optim.zero_grad()

            batch = torch.rand(8, 100, device="cuda")
            model(batch).sum().backward()
            dist_model(batch).sum().backward()

            optim.step()
            for d_optim in _dist_optim:
                d_optim.step()

        # Get the state_dict, and compare the result
        msd = model.state_dict()
        osd = optim.state_dict()
        dist_msd, dist_osd = get_state_dict(
            dist_model, optimizers=dist_optim, options=options
        )
        self._verify_msd(msd, dist_msd, options)
        self._verify_osd_by_load(model, optim, copy_optim, dist_osd)
        self._verify_osd(model, optim, osd, dist_osd)

        # Initialize a completely new model to simulate checkpoint load.
        _, _, _, dist_model, dist_optim = init_model_optim()

        # Simulate DCP distributed load. We need to first get the state_dict and
        # pass them to DCP to load the saved state_dict from the storage.
        # Then finally we can call set_state_dict().
        if not isinstance(dist_optim, list):
            dist_optim = [dist_optim]
        if test_frozen:
            # We won't be able to load the partial state_dict back.
            return
        # Since we already have the state_dict saved before, no need to call DCP.
        # We can directly load them back. This asser is to ensure that optimizer
        # state storage are initialized.
        # self.assertEqual(len(curr_dist_osd[STATE]), len(dist_osd[STATE]))
        set_model_state_dict(
            dist_model,
            model_state_dict=dist_msd,
            options=options,
        )
        set_optimizer_state_dict(
            dist_model,
            optimizers=dist_optim,
            optim_state_dict=dist_osd,
            options=options,
        )

        # Check if the new state_dict are the same
        dist_msd, dist_osd = get_state_dict(
            dist_model, optimizers=dist_optim, options=options
        )
        self._verify_msd(msd, dist_msd, options)
        # TODO: Ditto
        # self._verify_osd_by_load(model, optim, copy_optim, dist_osd)
        self._verify_osd(model, optim, osd, dist_osd)

        # Test _patch_model_state_dict, and _patch_optimizer_state_dict
        _patch_model_state_dict(dist_model, options=options)
        _patch_optimizer_state_dict(dist_model, optimizers=dist_optim, options=options)
        dist_msd = dist_model.state_dict()
        dist_osd = dist_optim[0].state_dict()
        self._verify_msd(msd, dist_msd, options)
        self._verify_osd_by_load(model, optim, copy_optim, dist_osd)
        self._verify_osd(model, optim, osd, dist_osd)

    def _test_fsdp(
        self,
        *,
        use_orig_params: bool,
        use_dtensor: bool,
        wrapping: Tuple[nn.Module] = (),
        compile_model: bool = False,
        optimizer_class: Type[Optimizer],
    ) -> None:
        if not use_orig_params:
            return

        # TODO: remove this return after we complete the composable API side change for device_mesh
        if use_dtensor:
            return

        def init_model_optim():
            if use_dtensor:
                device_mesh = init_device_mesh("cuda", (self.world_size,))

            orig_model = CompositeParamModel(device=torch.device("cuda"))
            orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True)
            copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True)
            if wrapping:
                strategy = set(wrapping)
            else:
                strategy = {UnitModule}
            if use_dtensor:
                device_mesh = init_device_mesh("cuda", (self.world_size,))
                dist_model = FSDP(
                    copy.deepcopy(orig_model),
                    auto_wrap_policy=ModuleWrapPolicy(strategy),
                    use_orig_params=use_orig_params,
                    device_mesh=device_mesh,
                )
            else:
                dist_model = FSDP(
                    copy.deepcopy(orig_model),
                    auto_wrap_policy=ModuleWrapPolicy(strategy),
                    use_orig_params=use_orig_params,
                )

            if compile_model:
                dist_model = torch.compile(dist_model)
            dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4, foreach=True)
            return orig_model, orig_optim, copy_optim, dist_model, dist_optim

        self._test_save_load(init_model_optim)

    @with_comms
    @skip_if_lt_x_gpu(2)
    def test_fsdp(self) -> None:
        self.run_subtests(
            {
                "use_orig_params": [True, False],
                "use_dtensor": [True, False],
                "wrapping": [(), (nn.Linear, UnitModule)],
                "optimizer_class": [
                    torch.optim.Adam,
                    torch.optim.AdamW,
                    torch.optim.SGD,
                ],
            },
            self._test_fsdp,
        )

    @with_comms
    @skip_if_lt_x_gpu(2)
    def test_compiled_fsdp(self) -> None:
        self.run_subtests(
            {
                "use_orig_params": [True],
                "use_dtensor": [False],
                "wrapping": [()],
                "optimizer_class": [torch.optim.Adam, torch.optim.AdamW],
            },
            self._test_fsdp,
        )

    def _test_fsdp2(
        self,
        *,
        reshard_after_forward: Union[bool, int],
        optimizer_class: Type[Optimizer],
        compile_model: bool,
        foreach: bool = True,
    ):
        def init_model_optim():
            orig_model = CompositeParamModel(device=torch.device("cuda"))
            orig_optim = optimizer_class(
                orig_model.parameters(), lr=1e-4, foreach=foreach
            )
            copy_optim = optimizer_class(
                orig_model.parameters(), lr=1e-4, foreach=foreach
            )

            dist_model = fully_shard(
                copy.deepcopy(orig_model),
                reshard_after_forward=reshard_after_forward,
            )

            if compile_model:
                dist_model = torch.compile(dist_model)
            dist_optim = optimizer_class(
                dist_model.parameters(), lr=1e-4, foreach=foreach
            )

            return orig_model, orig_optim, copy_optim, dist_model, dist_optim

        self._test_save_load(init_model_optim)

    @with_comms
    @skip_if_lt_x_gpu(2)
    def test_fsdp2(self) -> None:
        self.run_subtests(
            {
                "reshard_after_forward": [True, False],
                "optimizer_class": [torch.optim.Adam, torch.optim.AdamW],
                "compile_model": [True, False],
            },
            self._test_fsdp2,
        )

    def _test_ddp(self, use_composable: bool, optimizer_class: Type[Optimizer]) -> None:
        def init_model_optim():
            orig_model = CompositeParamModel(device=torch.device("cuda"))
            orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
            copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
            if use_composable:
                dist_model = replicate(copy.deepcopy(orig_model))
            else:
                dist_model = DDP(copy.deepcopy(orig_model))
            dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4)
            return orig_model, orig_optim, copy_optim, dist_model, dist_optim

        self._test_save_load(init_model_optim)

    @with_comms
    @skip_if_lt_x_gpu(2)
    def test_ddp(self) -> None:
        self.run_subtests(
            {
                "use_composable": [True, False],
                "optimizer_class": [
                    torch.optim.Adam,
                    torch.optim.AdamW,
                    torch.optim.SGD,
                ],
            },
            self._test_ddp,
        )

    def _test_fsdp_ddp(
        self,
        optimizer_class: Type[Optimizer],
        optim_in_backward: bool = False,
        test_frozen: bool = False,
    ) -> None:
        def init_model_optim():
            orig_model = CompositeParamModel(device=torch.device("cuda"))
            if test_frozen:
                for param in chain(
                    orig_model.u1.parameters(), orig_model.u2.parameters()
                ):
                    param.requires_grad = False
            orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
            copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
            dist_model = copy.deepcopy(orig_model)
            dist_model.l = DDP(dist_model.l)
            dist_model = FSDP(
                copy.deepcopy(orig_model),
                auto_wrap_policy=ModuleWrapPolicy({UnitModule}),
                use_orig_params=optim_in_backward,
                ignored_modules=[dist_model.l],
            )
            if optim_in_backward:
                _apply_optimizer_in_backward(
                    optimizer_class, dist_model.parameters(), {"lr": 1e-4}
                )
                dist_optim = [
                    p._in_backward_optimizers[0] for p in dist_model.parameters()
                ]
            else:
                dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4)
            return orig_model, orig_optim, copy_optim, dist_model, dist_optim

        self._test_save_load(init_model_optim, test_frozen)

    @with_comms
    @skip_if_lt_x_gpu(2)
    def test_fsdp_ddp(self) -> None:
        self.run_subtests(
            {
                "optimizer_class": [torch.optim.Adam, torch.optim.AdamW],
            },
            self._test_fsdp_ddp,
        )

    def _test_single_gpu(self, optimizer_class: Type[Optimizer]) -> None:
        def init_model_optim():
            orig_model = CompositeParamModel(device=torch.device("cuda"))
            orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
            copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
            model_copy = copy.deepcopy(orig_model)
            optim_copy = optimizer_class(model_copy.parameters(), lr=1e-4)
            return orig_model, orig_optim, copy_optim, model_copy, optim_copy

        self._test_save_load(init_model_optim)

    @with_comms
    @skip_if_lt_x_gpu(1)
    def test_single_gpu(self) -> None:
        self.run_subtests(
            {"optimizer_class": [torch.optim.Adam, torch.optim.AdamW]},
            self._test_single_gpu,
        )

    @with_comms
    @skip_if_lt_x_gpu(1)
    def test_strict(self) -> None:
        model = CompositeParamModel(device=torch.device("cuda"))

        model_state_dict = get_model_state_dict(model)
        key = next(iter(model_state_dict.keys()))
        model_state_dict["abc"] = torch.zeros(10)
        with self.assertRaisesRegex(RuntimeError, "Unexpected key"):
            set_model_state_dict(model, model_state_dict=model_state_dict)
        model_state_dict.pop(key)
        incompatible_keys = set_model_state_dict(
            model,
            model_state_dict=model_state_dict,
            options=StateDictOptions(strict=False),
        )
        self.assertEqual(incompatible_keys.missing_keys, [key])
        self.assertEqual(incompatible_keys.unexpected_keys, ["abc"])
        model_state_dict.pop("abc")
        with self.assertRaisesRegex(RuntimeError, "Missing key"):
            set_model_state_dict(model, model_state_dict=model_state_dict)

    def _test_cpu_offload_full_state_dict(
        self, optimizer_class: Type[Optimizer]
    ) -> None:
        orig_model = CompositeParamModel(device=torch.device("cuda"))
        device_mesh = init_device_mesh("cuda", (self.world_size,))
        dist_model = FSDP(
            copy.deepcopy(orig_model),
            auto_wrap_policy=ModuleWrapPolicy({UnitModule}),
            use_orig_params=True,
            device_mesh=device_mesh,
        )

        dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4)

        mst, ost = get_state_dict(
            dist_model,
            dist_optim,
            options=StateDictOptions(cpu_offload=True),
        )

        cpu_device = torch.device("cpu")

        def is_cpu(v):
            if isinstance(v, DTensor):
                return v.device == cpu_device
            elif isinstance(v, ShardedTensor):
                shards = v.local_shards()
                if not shards:
                    return True
                return shards[0].tensor.device == cpu_device
            else:
                return v.device == cpu_device

        self.assertTrue(
            tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, mst)
        )
        self.assertTrue(
            tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, ost)
        )

        mst, ost = get_state_dict(
            dist_model, dist_optim, options=StateDictOptions(full_state_dict=True)
        )

        self.assertTrue(
            tree_all(lambda v: not isinstance(v, (DTensor, ShardedTensor)), mst)
        )
        self.assertTrue(
            tree_all(lambda v: not isinstance(v, (DTensor, ShardedTensor)), ost)
        )

        mst, ost = get_state_dict(
            dist_model,
            dist_optim,
            options=StateDictOptions(full_state_dict=True, cpu_offload=True),
        )

        if self.rank == 0:
            self.assertTrue(
                tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, mst)
            )
            self.assertTrue(
                tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, ost)
            )
        else:
            self.assertEqual(mst, {})
            self.assertEqual(ost, {})

    @with_comms
    @skip_if_lt_x_gpu(2)
    def test_cpu_offload_full_state_dict(self) -> None:
        self.run_subtests(
            {"optimizer_class": [torch.optim.Adam, torch.optim.AdamW]},
            self._test_cpu_offload_full_state_dict,
        )

    @with_comms
    @skip_if_lt_x_gpu(1)
    def test_activation_ckpt_fqns_ddp(self) -> None:
        """Tests that activation checkpointing prefixes are removed from module names"""
        model = CompositeParamModel(device=torch.device("cuda"))
        original_keys = get_model_state_dict(model).keys()

        apply_activation_checkpointing(model)
        model = DDP(model)
        new_keys = get_model_state_dict(model).keys()

        self.assertEqual(original_keys, new_keys)

    @with_comms
    @skip_if_lt_x_gpu(1)
    def test_activation_ckpt_fqns_fsdp1(self) -> None:
        self.run_subtests(
            {"use_orig_params": [True, False]},
            self._test_activation_ckpt_fqns_fsdp1,
        )

    def _test_activation_ckpt_fqns_fsdp1(self, use_orig_params: bool) -> None:
        """Tests that activation checkpointing prefixes are removed from module names"""
        model = CompositeParamModel(device=torch.device("cuda"))
        original_keys = get_model_state_dict(model).keys()

        apply_activation_checkpointing(model)
        model = FSDP(model, use_orig_params=use_orig_params)
        new_keys = get_model_state_dict(model).keys()

        self.assertEqual(original_keys, new_keys)

    @with_comms
    @skip_if_lt_x_gpu(1)
    def test_extra_state(self) -> None:
        model = CompositeParamModel(device=torch.device("cuda"))

        def get_extra_state(self):
            return "MyState"

        def set_extra_state(self, state):
            return

        UnitModule.get_extra_state = get_extra_state
        UnitModule.set_extra_state = set_extra_state

        ddp_model = DDP(copy.deepcopy(model))
        set_model_state_dict(ddp_model, get_model_state_dict(ddp_model))
        self.assertEqual(model.state_dict()["u1._extra_state"], "MyState")
        self.assertEqual(model.state_dict(), get_model_state_dict(ddp_model))

    @with_comms
    @skip_if_lt_x_gpu(1)
    def test_non_persistent_buffers(self) -> None:
        model = CompositeParamModel(device=torch.device("cuda"))
        model.register_buffer(
            "dont_save_me", torch.rand(100, device="cuda"), persistent=False
        )
        ddp_model = DDP(copy.deepcopy(model))
        set_model_state_dict(ddp_model, get_model_state_dict(ddp_model))
        self.assertEqual(model.state_dict(), get_model_state_dict(ddp_model))

    def _test_broadcast_from_rank0(self, wrapper) -> None:
        model = CompositeParamModel(device=torch.device("cuda"))
        optim = torch.optim.Adam(model.parameters())
        fsdp_model = wrapper(copy.deepcopy(model))
        fsdp_optim = torch.optim.Adam(fsdp_model.parameters())

        batch = torch.rand(8, 100, device="cuda")
        model(batch).sum().backward()
        optim.step()
        states, optim_states = get_state_dict(model, optim)

        fsdp_model(batch).sum().backward()
        fsdp_optim.step()

        def check(equal):
            fsdp_states = get_model_state_dict(
                fsdp_model,
                options=StateDictOptions(full_state_dict=True),
            )
            fsdp_optim_states = get_optimizer_state_dict(
                fsdp_model,
                fsdp_optim,
                options=StateDictOptions(full_state_dict=True),
            )
            if equal:
                self.assertEqual(states, fsdp_states)
                self.assertEqual(optim_states, fsdp_optim_states)
            else:
                self.assertNotEqual(states, fsdp_states)
                self.assertNotEqual(optim_states, fsdp_optim_states)

        check(equal=True)
        fsdp_model(batch).sum().backward()
        fsdp_optim.step()
        check(equal=False)

        # Drop the states to simulate loading from rank0
        if dist.get_rank() > 0:
            load_states = {}
            load_states2 = {}
            load_optim_states = {}
        else:
            load_states = copy.deepcopy(states)
            load_states2 = copy.deepcopy(states)
            load_optim_states = copy.deepcopy(optim_states)

        set_model_state_dict(
            fsdp_model,
            model_state_dict=load_states,
            options=StateDictOptions(broadcast_from_rank0=True, full_state_dict=True),
        )
        set_optimizer_state_dict(
            fsdp_model,
            fsdp_optim,
            optim_state_dict=load_optim_states,
            options=StateDictOptions(broadcast_from_rank0=True, full_state_dict=True),
        )

        check(equal=True)
        # Verify the `strict` flag.
        load_states = load_states2
        if load_states:
            key = next(iter(load_states.keys()))
            load_states.pop(key)
        with self.assertRaisesRegex(RuntimeError, "Missing key"):
            set_model_state_dict(
                fsdp_model,
                model_state_dict=load_states,
                options=StateDictOptions(
                    broadcast_from_rank0=True, full_state_dict=True
                ),
            )

    @with_comms
    @skip_if_lt_x_gpu(2)
    def test_broadcast_from_rank0(self) -> None:
        device_mesh = init_device_mesh("cuda", (self.world_size,))
        self.run_subtests(
            {
                "wrapper": [
                    functools.partial(fully_shard, mesh=device_mesh),
                    functools.partial(FSDP, device_mesh=device_mesh),
                ]
            },
            self._test_broadcast_from_rank0,
        )

    @with_comms
    @skip_if_lt_x_gpu(4)
    def test_broadcast_from_rank0_hsdp(self) -> None:
        device_mesh = init_device_mesh("cuda", (2, self.world_size // 2))
        self.run_subtests(
            {
                "wrapper": [
                    functools.partial(
                        FSDP,
                        device_mesh=device_mesh,
                        sharding_strategy=ShardingStrategy.HYBRID_SHARD,
                    ),
                ]
            },
            self._test_broadcast_from_rank0,
        )

    @with_comms
    @skip_if_lt_x_gpu(2)
    def test_fsdp_root_not_initialized(self) -> None:
        # This test verifies that FSDP root is not initialized but we should
        # still be able to  get the state_dict without errors because
        # fsdp_model.state_dict() will trigger the FSDP initialization.
        device_mesh = init_device_mesh("cuda", (self.world_size,))
        model = CompositeParamModel(device=torch.device("cuda"))
        fsdp_model = FSDP(copy.deepcopy(model), device_mesh=device_mesh)
        fsdp_optim = torch.optim.Adam(fsdp_model.parameters())
        get_model_state_dict(fsdp_model)
        get_optimizer_state_dict(fsdp_model, fsdp_optim)

    @with_comms
    @skip_if_lt_x_gpu(2)
    def test_optim_state_dict_param_matching(self) -> None:
        # This test verifies parameters between optim and optim_state_dict
        # "initial_lr" is added to optim_state_dict, but not to the new optim
        # We test whether "initial_lr" appear in optim after
        # set_optimizer_state_dict.
        device = "cuda"
        torch.manual_seed(0)
        model = nn.Sequential(
            *[nn.Linear(4, 4, device=device, bias=False) for _ in range(2)]
        )
        for layer in model:
            fully_shard(layer)
        fully_shard(model)
        optim = torch.optim.Adam(model.parameters(), lr=1e-2)
        torch.optim.lr_scheduler.LambdaLR(
            optim, lr_lambda=[lambda epoch: 0.95**epoch]
        )
        opt_state_dict = ptd_state_dict.get_optimizer_state_dict(
            model,
            optim,
            options=ptd_state_dict.StateDictOptions(
                full_state_dict=True, cpu_offload=True
            ),
        )
        if dist.get_rank() == 0:
            self.assertTrue("initial_lr" in opt_state_dict["param_groups"][0])

        optim = torch.optim.Adam(model.parameters(), lr=1e-2)
        self.assertTrue("initial_lr" not in optim.param_groups[0])

        ptd_state_dict.set_optimizer_state_dict(
            model,
            optim,
            optim_state_dict=opt_state_dict,
            options=ptd_state_dict.StateDictOptions(
                broadcast_from_rank0=True, full_state_dict=True
            ),
        )
        if dist.get_rank() == 0:
            self.assertTrue("initial_lr" in optim.param_groups[0])

    @with_comms
    @skip_if_lt_x_gpu(2)
    def test_flattened_osd(self) -> None:
        device_mesh = init_device_mesh("cuda", (self.world_size,))
        model = CompositeParamModel(device=torch.device("cuda"))
        fsdp_model = fully_shard(copy.deepcopy(model), mesh=device_mesh)
        fsdp_optim = torch.optim.AdamW(fsdp_model.parameters())
        batch = torch.rand(8, 100, device="cuda")
        fsdp_model(batch).sum().backward()
        fsdp_optim.step()
        fsdp_optim.zero_grad()
        osd1 = get_optimizer_state_dict(fsdp_model, fsdp_optim)
        osd2 = get_optimizer_state_dict(
            fsdp_model,
            fsdp_optim,
            options=StateDictOptions(flatten_optimizer_state_dict=True),
        )
        fsdp_optim2 = torch.optim.AdamW(fsdp_model.parameters())
        set_optimizer_state_dict(
            fsdp_model, optimizers=fsdp_optim2, optim_state_dict=osd2
        )
        self.assertEqual(fsdp_optim.state_dict(), fsdp_optim2.state_dict())
        set_optimizer_state_dict(
            fsdp_model, optimizers=fsdp_optim2, optim_state_dict=osd1
        )
        self.assertEqual(fsdp_optim.state_dict(), fsdp_optim2.state_dict())

    @with_comms
    @skip_if_lt_x_gpu(1)
    def test_deprecate_partial(self) -> None:
        model = CompositeParamModel(device=torch.device("cuda"))

        model_state_dict1 = get_model_state_dict(model)
        model_state_dict1 = copy.deepcopy(model_state_dict1)
        with self.assertWarnsRegex(
            FutureWarning,
            "Getting submodules only model/optim state_dict is deprecated",
        ):
            model_state_dict2 = get_model_state_dict(model, submodules={model.l})
        model_state_dict2 = copy.deepcopy(model_state_dict2)
        with self.assertWarnsRegex(
            FutureWarning,
            "Getting submodules only model/optim state_dict is deprecated",
        ):
            model_state_dict3 = get_model_state_dict(
                model,
                submodules={model.l},
                options=StateDictOptions(keep_submodule_prefixes=False),
            )
        model_state_dict3 = copy.deepcopy(model_state_dict3)
        self.assertEqual(len(model_state_dict2), 2)
        self.assertEqual(len(model_state_dict3), 2)
        for key in model_state_dict3.keys():
            full_fqn = f"l.{key}"
            value1 = model_state_dict1[full_fqn]
            value2 = model_state_dict2[full_fqn]
            value3 = model_state_dict3[key]
            self.assertEqual(value1, value2)
            self.assertEqual(value2, value3)

        zeros_state_dict = {
            k: torch.zeros_like(v) for k, v in model_state_dict1.items()
        }
        model.load_state_dict(zeros_state_dict)
        set_model_state_dict(
            model,
            model_state_dict=model_state_dict2,
            options=StateDictOptions(strict=False),
        )
        self.assertEqual(model.l.weight, model_state_dict1["l.weight"])
        self.assertEqual(model.l.bias, model_state_dict1["l.bias"])

        model.load_state_dict(zeros_state_dict)
        with self.assertWarnsRegex(FutureWarning, "Passing model_state_dict as a "):
            set_model_state_dict(
                model,
                model_state_dict={model.l: model_state_dict3},
                options=StateDictOptions(strict=False),
            )
        self.assertEqual(model.l.weight, model_state_dict1["l.weight"])
        self.assertEqual(model.l.bias, model_state_dict1["l.bias"])

    @with_comms
    @skip_if_lt_x_gpu(1)
    def test_deprecate_fsdp_api(self) -> None:
        device_mesh = init_device_mesh("cuda", (self.world_size,))
        model = CompositeParamModel(device=torch.device("cuda"))
        fsdp_model = FSDP(copy.deepcopy(model), device_mesh=device_mesh)
        with self.assertWarnsRegex(
            FutureWarning,
            r"FSDP.state_dict_type\(\) and FSDP.set_state_dict_type\(\) are being deprecated",
        ):
            with FSDP.state_dict_type(fsdp_model, StateDictType.FULL_STATE_DICT):
                fsdp_model.state_dict()

        with self.assertRaisesRegex(AssertionError, "FutureWarning not triggered"):
            with self.assertWarnsRegex(
                FutureWarning,
                r"FSDP.state_dict_type\(\) and FSDP.set_state_dict_type\(\) are being deprecated",
            ):
                get_model_state_dict(model)

    @with_comms
    @skip_if_lt_x_gpu(2)
    def test_shared_weight(self):
        class TiedEmbeddingModel(nn.Module):
            def __init__(self, vocab_size, embedding_dim):
                super().__init__()
                self.embedding = nn.Embedding(vocab_size, embedding_dim)
                self.decoder = nn.Linear(embedding_dim, vocab_size)
                self.decoder.weight = self.embedding.weight  # Tying weights

            def forward(self, input):
                input = (input * 10).to(torch.int)
                embedded = self.embedding(input)
                output = self.decoder(embedded)
                return output

        def init_model_optim():
            device_mesh = init_device_mesh("cuda", (self.world_size,))
            orig_model = TiedEmbeddingModel(10000, 300).to(torch.device("cuda"))
            orig_optim = torch.optim.AdamW(orig_model.parameters(), lr=1e-4)
            copy_optim = torch.optim.AdamW(orig_model.parameters(), lr=1e-4)
            dist_model = FSDP(copy.deepcopy(orig_model), device_mesh=device_mesh)
            dist_optim = torch.optim.AdamW(dist_model.parameters(), lr=1e-4)
            return orig_model, orig_optim, copy_optim, dist_model, dist_optim

        self._test_save_load(init_model_optim)

    @with_comms
    @skip_if_lt_x_gpu(2)
    def test_setting_meta_device_model(self) -> None:
        # This test verifies that we can set model state dict by a meta device model
        torch.manual_seed(0)
        with torch.device("meta"):
            meta_model = nn.Sequential(*[nn.Linear(4, 4, bias=False) for _ in range(2)])
            for layer in meta_model:
                fully_shard(layer)
            fully_shard(meta_model)
        with torch.device("cpu"):
            cpu_model = nn.Sequential(*[nn.Linear(4, 4, bias=False) for _ in range(2)])
            full_sd = cpu_model.state_dict()
        set_model_state_dict(
            meta_model,
            model_state_dict=full_sd,
            options=StateDictOptions(full_state_dict=True, strict=False),
        )
        meta_model_state_dict = meta_model.state_dict()
        cpu_model_state_dict = get_model_state_dict(cpu_model)
        for cpu_model_key, cpu_model_value in cpu_model_state_dict.items():
            meta_model_value = (
                meta_model_state_dict[cpu_model_key]
                .full_tensor()
                .to(device=cpu_model_value.device)
            )
            self.assertEqual(cpu_model_value, meta_model_value)

    @with_comms
    @skip_if_lt_x_gpu(2)
    def test_setting_meta_device_model_broadcasting(self) -> None:
        # This test verifies that we can set model state dict by a meta device model
        # With the correlated changes in state_dict, meta device model should be accepted
        # in broadcasting and get copied successfully.
        torch.manual_seed(0)
        with torch.device("meta"):
            meta_model = nn.Sequential(*[nn.Linear(4, 4, bias=False) for _ in range(2)])
            for layer in meta_model:
                fully_shard(layer)
            fully_shard(meta_model)
        with torch.device("cpu"):
            cpu_model = nn.Sequential(*[nn.Linear(4, 4, bias=False) for _ in range(2)])
            full_sd = cpu_model.state_dict()
        set_model_state_dict(
            meta_model,
            model_state_dict=full_sd,
            options=StateDictOptions(
                broadcast_from_rank0=True, full_state_dict=True, strict=False
            ),
        )
        meta_model_state_dict = meta_model.state_dict()
        cpu_model_state_dict = get_model_state_dict(cpu_model)
        for cpu_model_key, cpu_model_value in cpu_model_state_dict.items():
            meta_model_value = (
                meta_model_state_dict[cpu_model_key]
                .full_tensor()
                .to(device=cpu_model_value.device)
            )
            self.assertEqual(cpu_model_value, meta_model_value)


class TestNoComm(MultiProcessTestCase):
    def setUp(self) -> None:
        super().setUp()
        self._spawn_processes()

    @skip_if_lt_x_gpu(1)
    def test_no_dist(self) -> None:
        model = CompositeParamModel(device=torch.device("cuda"))
        optim = torch.optim.AdamW(model.parameters(), lr=1e-4)

        self.assertFalse(dist.is_initialized())
        msd = get_model_state_dict(
            model, options=StateDictOptions(full_state_dict=True, cpu_offload=True)
        )
        for v in msd.values():
            self.assertFalse(v.is_cuda)
        self.assertEqual(model.state_dict(), msd)
        set_model_state_dict(model, model.state_dict())
        osd = get_optimizer_state_dict(
            model,
            optim,
            options=StateDictOptions(full_state_dict=True, cpu_offload=True),
        )
        set_optimizer_state_dict(model, optim, osd)
        set_optimizer_state_dict(model, optim, optim.state_dict())


if __name__ == "__main__":
    run_tests()