1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
# Owner(s): ["oncall: distributed"]
import copy
import io
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
from torch.distributed._state_dict_utils import (
_check_state_dict_similarity,
_copy_state_dict,
_create_cpu_state_dict,
_distribute_tensors,
_gather_state_dict,
_offload_state_dict_to_cpu,
)
from torch.distributed._tensor import (
distribute_tensor,
DTensor,
init_device_mesh,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
class TestStateDictUtils(DTensorTestBase):
@property
def world_size(self):
return min(4, torch.cuda.device_count())
@with_comms
@skip_if_lt_x_gpu(2)
def test_gather_state_dict_dtensor(self):
device_mesh = self.build_device_mesh()
shard_spec = [Shard(0)]
torch.random.manual_seed(dist.get_rank())
local_tensor = torch.randn(3, 3, 3)
dist_tensor = DTensor.from_local(local_tensor, device_mesh, shard_spec)
state_dict = {"dtensor": dist_tensor}
gathered_state_dict = _gather_state_dict(state_dict)
expected_gathered_dtensor = funcol.all_gather_tensor(
dist_tensor.to_local(), gather_dim=0, group=(device_mesh, 0)
)
self.assertEqual(expected_gathered_dtensor, gathered_state_dict["dtensor"])
self.assertTrue(gathered_state_dict["dtensor"].is_cuda)
@with_comms
@skip_if_lt_x_gpu(4)
def test_gather_with_cpu_and_ranks_only(self):
device_mesh = self.build_device_mesh()
shard_spec = [Shard(0)]
torch.random.manual_seed(dist.get_rank())
local_tensor = torch.randn(3, 3, 3)
dist_tensor = DTensor.from_local(local_tensor, device_mesh, shard_spec)
state_dict = {"dtensor": dist_tensor}
gathered_state_dict = _gather_state_dict(
state_dict, cpu_offload=True, ranks_only=(0, 2)
)
expected_gathered_dtensor = funcol.all_gather_tensor(
dist_tensor.to_local(), gather_dim=0, group=(device_mesh, 0)
)
if dist.get_rank() in (0, 2):
self.assertEqual(expected_gathered_dtensor, gathered_state_dict["dtensor"])
self.assertFalse(gathered_state_dict["dtensor"].is_cuda)
else:
self.assertEqual(gathered_state_dict, {})
@with_comms
@skip_if_lt_x_gpu(4)
def test_cpu_and_ranks_only(self):
device = torch.device("cuda")
state_dict = {
"tensor1": torch.arange(10, device=device),
"tensor2": torch.ones(10, device=device),
}
cpu_state_dict = _offload_state_dict_to_cpu(state_dict, ranks_only=(0, 2))
if dist.get_rank() in (0, 2):
for v in cpu_state_dict.values():
self.assertFalse(v.is_cuda)
self.assertEqual(cpu_state_dict["tensor1"], torch.arange(10))
self.assertEqual(cpu_state_dict["tensor2"], torch.ones(10))
else:
self.assertEqual(cpu_state_dict, {})
@with_comms
@skip_if_lt_x_gpu(4)
def test_complicated_dict(self):
def create_dtensor():
device_mesh = self.build_device_mesh()
shard_spec = [Shard(0)]
torch.random.manual_seed(dist.get_rank())
local_tensor = torch.randn(3, 3, 3)
dist_tensor = DTensor.from_local(local_tensor, device_mesh, shard_spec)
tensor = funcol.all_gather_tensor(
dist_tensor.to_local(), gather_dim=0, group=(device_mesh, 0)
)
return tensor, dist_tensor
ltensor, ldtensor = [], []
for i in range(10):
tensor, dtensor = create_dtensor()
ltensor.append(tensor)
ltensor.append(torch.ones(10, device=torch.device("cuda")))
ldtensor.append(dtensor)
ldtensor.append(torch.ones(10, device=torch.device("cuda")))
tensor, dtensor = create_dtensor()
dist_state_dict = {
"local": dtensor,
"list": ldtensor,
"arange": torch.arange(10, device=torch.device("cuda")),
}
state_dict = {
"local": tensor,
"list": ltensor,
"arange": torch.arange(10, device=torch.device("cuda")),
}
self.assertEqual(state_dict, _gather_state_dict(dist_state_dict))
@skip_if_lt_x_gpu(2)
def test_create_cpu_state_dict(self):
device = torch.device("cuda")
buffer = io.BytesIO()
torch.save(torch.ones(10), buffer)
buffer.seek(0)
state_dict = {
"tensor1": torch.arange(10, device=device),
"tensor2": torch.ones(10, device=device),
"non_tensor_bytes_io": copy.deepcopy(buffer),
"non_tensor_bytes": buffer.read(),
"step": torch.tensor(7, dtype=torch.float),
"lr": 1.5,
"nested": {"list": [1, 2, 3, 4]},
}
def _verify(cpu_state_dict):
# Verify the correctness of _check_state_dict_similarity()
self.assertTrue(_check_state_dict_similarity(state_dict, cpu_state_dict))
tensor1 = cpu_state_dict["tensor1"]
cpu_state_dict["tensor1"] = torch.arange(11)
self.assertFalse(_check_state_dict_similarity(state_dict, cpu_state_dict))
cpu_state_dict["tensor1"] = tensor1
_copy_state_dict(state_dict, cpu_state_dict)
# Verify if _copy_state_dict works
for v in cpu_state_dict.values():
if isinstance(v, torch.Tensor):
self.assertFalse(v.is_cuda)
self.assertEqual(cpu_state_dict["tensor1"], torch.arange(10))
self.assertEqual(cpu_state_dict["tensor2"], torch.ones(10))
buffer.seek(0)
cpu_state_dict["non_tensor_bytes_io"].seek(0)
self.assertEqual(
cpu_state_dict["non_tensor_bytes_io"].read(), buffer.read()
)
buffer.seek(0)
self.assertEqual(cpu_state_dict["non_tensor_bytes"], buffer.read())
self.assertEqual(cpu_state_dict["lr"], 1.5)
self.assertEqual(cpu_state_dict["step"], 7)
self.assertEqual(cpu_state_dict["nested"], {"list": [1, 2, 3, 4]})
cpu_state_dict = _create_cpu_state_dict(state_dict, pin_memory=True)
_verify(cpu_state_dict)
cpu_state_dict = _create_cpu_state_dict(state_dict, share_memory=True)
_verify(cpu_state_dict)
cpu_state_dict = _create_cpu_state_dict(
state_dict, share_memory=True, pin_memory=True
)
_verify(cpu_state_dict)
@with_comms
@skip_if_lt_x_gpu(2)
def test_state_dict_util_distribute_tensors(self):
even_tensor = torch.randn(self.world_size, 2)
uneven_tensor = torch.randn(1, 2)
mesh = init_device_mesh("cuda", mesh_shape=(self.world_size,))
even_dtensor = distribute_tensor(
torch.randn(self.world_size, 2), mesh, [Shard(0)]
)
uneven_dtensor = distribute_tensor(torch.randn(1, 2), mesh, [Shard(0)])
# the dtensor and tensor are different before _distribute_tensors is called.
local_state_dict = {
"even": [even_dtensor, even_tensor],
"uneven": [uneven_dtensor, uneven_tensor],
}
ref_local_state_dict = copy.deepcopy(local_state_dict)
keys = ["even", "uneven"]
_distribute_tensors(local_state_dict, keys, self.device_type)
for local_v, ref_v in zip(
local_state_dict.values(), ref_local_state_dict.values()
):
self.assertEqual(local_v.size(), ref_v[0].size())
self.assertEqual(local_v.stride(), ref_v[0].stride())
self.assertNotEqual(
local_v_full_tensor := local_v.full_tensor(), ref_v[0].full_tensor()
)
self.assertEqual(local_v_full_tensor, ref_v[1])
if __name__ == "__main__":
run_tests()
|