File: test_fsdp_checkpoint.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (340 lines) | stat: -rw-r--r-- 12,605 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Owner(s): ["oncall: distributed"]
import contextlib
import sys
from copy import deepcopy
from functools import partial

import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
    checkpoint_wrapper,
    offload_wrapper,
)
from torch.distributed.fsdp import ShardingStrategy
from torch.distributed.fsdp.fully_sharded_data_parallel import (
    CPUOffload,
    FullyShardedDataParallel as FSDP,
)
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import _maybe_wrap_fsdp, FSDPTest, get_devtype
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
    TEST_WITH_DEV_DBG_ASAN,
)
from torch.utils.checkpoint import checkpoint


device_type = torch.device(get_devtype())

if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
    print(
        "Skip dev-asan as torch + multiprocessing spawn have known issues",
        file=sys.stderr,
    )
    sys.exit(0)
_save_on_cpu_called = False


def get_patched_save_on_cpu():
    orig_save_on_cpu = (
        torch.distributed.algorithms._checkpoint.checkpoint_wrapper.save_on_cpu
    )

    def patched_save_on_cpu(*args, **kwargs):
        global _save_on_cpu_called
        _save_on_cpu_called = True
        return orig_save_on_cpu(*args, **kwargs)

    return patched_save_on_cpu


@contextlib.contextmanager
def patch_save_on_cpu(new_save_on_cpu):
    orig_save_on_cpu = (
        torch.distributed.algorithms._checkpoint.checkpoint_wrapper.save_on_cpu
    )
    torch.distributed.algorithms._checkpoint.checkpoint_wrapper.save_on_cpu = (
        new_save_on_cpu
    )
    try:
        yield
    finally:
        torch.distributed.algorithms._checkpoint.checkpoint_wrapper.save_on_cpu = (
            orig_save_on_cpu
        )


class TestFSDPCheckpoint(FSDPTest):
    class SequentialModule(nn.Module):
        def __init__(
            self,
            checkpoint_layer=False,
            offload_activations=False,
            wrap_fsdp=False,
            *fsdp_args,
            **fsdp_kwargs,
        ):
            torch.manual_seed(0)
            super().__init__()
            l1 = nn.Linear(3, 3).to(device_type.type)
            l2 = nn.Linear(3, 3).to(device_type.type)
            l3 = nn.Linear(3, 3).to(device_type.type)
            if checkpoint_layer:
                if offload_activations:
                    ckpt_wrapper = offload_wrapper
                else:
                    ckpt_wrapper = checkpoint_wrapper
                l1 = ckpt_wrapper(l1)
                l2 = ckpt_wrapper(l2)
                l3 = ckpt_wrapper(l3)
            fsdp_wrapper = partial(
                _maybe_wrap_fsdp, *fsdp_args, wrap_fsdp=wrap_fsdp, **fsdp_kwargs
            )
            self.ffn = nn.Sequential(
                fsdp_wrapper(l1),
                fsdp_wrapper(l2),
                fsdp_wrapper(l3),
            )

        def forward(self, x):
            return self.ffn(x)

    def _verify_parity(self, losses, outputs, models):
        assert losses
        assert outputs
        assert models
        for l, o in zip(losses[1:], outputs[1:]):
            self.assertEqual(losses[0], l)
            self.assertEqual(outputs[0], o)
        # Verify grads
        ref_model = models[0]
        ref_grads = [p.grad for p in ref_model.parameters()]
        for m in models[1:]:
            grads = [p.grad for p in m.parameters()]
            for ref_g, g in zip(ref_grads, grads):
                self.assertEqual(ref_g, g)

    @skip_if_lt_x_gpu(2)
    @parametrize(
        "cpu_offload",
        [CPUOffload(offload_params=True), CPUOffload(offload_params=False)],
    )
    @parametrize("offload_activations", [True, False])
    @parametrize("use_orig_params", [False, True])
    def test_checkpoint_fsdp_wrapping(
        self,
        cpu_offload: CPUOffload,
        offload_activations: bool,
        use_orig_params: bool,
    ):
        # Test checkpoint(FSDP(layer1), FSDP(layer2), ....)
        if offload_activations:
            wrapper_to_use = offload_wrapper
        else:
            wrapper_to_use = checkpoint_wrapper
        fsdp_kwargs = {"cpu_offload": cpu_offload, "use_orig_params": use_orig_params}
        ckpt_sequential_wrapped_fsdp = wrapper_to_use(
            TestFSDPCheckpoint.SequentialModule(
                wrap_fsdp=True,
                **fsdp_kwargs,
            ),
        )
        # Test FSDP(checkpoint(layer1)), FSDP(checkpoint(layer2)), ....
        inner_ckpt = TestFSDPCheckpoint.SequentialModule(
            checkpoint_layer=True,
            offload_activations=offload_activations,
            wrap_fsdp=True,
            **fsdp_kwargs,
        )
        baseline = TestFSDPCheckpoint.SequentialModule(
            wrap_fsdp=True,
            **fsdp_kwargs,
        )
        # note that reentrant-based checkpointing requires inputs to have grad
        # flag set.
        inp = torch.randn(10, 3, device=device_type.type, requires_grad=True)
        global _save_on_cpu_called
        models = [ckpt_sequential_wrapped_fsdp, inner_ckpt, baseline]
        with patch_save_on_cpu(get_patched_save_on_cpu()):
            for i in range(2):
                losses = []
                outputs = []
                for m in models:
                    check_offload = m != baseline and i == 0 and offload_activations
                    if check_offload:
                        self.assertFalse(_save_on_cpu_called)
                    out = m(inp)
                    if check_offload:
                        self.assertTrue(_save_on_cpu_called)
                        _save_on_cpu_called = False
                    loss = out.sum()
                    loss.backward()
                    losses.append(loss)
                    outputs.append(out)
                self._verify_parity(losses, outputs, models)
        dist.barrier()

    @skip_if_lt_x_gpu(2)
    @parametrize(
        "cpu_offload",
        [CPUOffload(offload_params=True), CPUOffload(offload_params=False)],
    )
    @parametrize("offload_activations", [True, False])
    @parametrize("use_orig_params", [False, True])
    def test_basic_checkpoint_end_to_end(
        self,
        cpu_offload: CPUOffload,
        offload_activations: bool,
        use_orig_params: bool,
    ):
        fsdp_kwargs = {"cpu_offload": cpu_offload, "use_orig_params": use_orig_params}
        global _save_on_cpu_called
        with patch_save_on_cpu(get_patched_save_on_cpu()):
            seq = TestFSDPCheckpoint.SequentialModule().to(device_type.type)
            # Runs FSDP with no checkpointing
            fsdp_only_seq = FSDP(deepcopy(seq), **fsdp_kwargs)
            # Runs checkpoint-wrapped FSDP
            if offload_activations:
                wrapper_to_use = offload_wrapper
            else:
                wrapper_to_use = checkpoint_wrapper
            checkpointed_fsdp = wrapper_to_use(
                FSDP(deepcopy(seq), **fsdp_kwargs),
            )
            # Runs FSDP-wrapped checkpointed module
            fsdp_wrapped_checkpoint = FSDP(
                wrapper_to_use(deepcopy(seq)),
                **fsdp_kwargs,
            )
            # Runs FSDP with manual calls to checkpoint.
            fsdp_call_checkpoint = FSDP(deepcopy(seq), **fsdp_kwargs)
            # note that reentrant-based checkpointing requires inputs to have grad
            # flag set.
            inp = torch.randn(10, 3, device=device_type.type, requires_grad=True)
            models = [
                fsdp_only_seq,
                checkpointed_fsdp,
                fsdp_wrapped_checkpoint,
                fsdp_call_checkpoint,
            ]
            # Ensure _save_on_cpu is not yet called
            self.assertFalse(_save_on_cpu_called)
            for i in range(6):
                losses = []
                outputs = []
                for m in models:
                    check_offload = (
                        m != fsdp_only_seq and i == 0 and offload_activations
                    )
                    if m == fsdp_call_checkpoint:
                        # _save_on_cpu should not be called yet
                        self.assertFalse(_save_on_cpu_called)
                        offload_ctx = (
                            get_patched_save_on_cpu()(pin_memory=True)
                            if offload_activations
                            else contextlib.nullcontext()
                        )
                        with offload_ctx:
                            out = checkpoint(m, inp, use_reentrant=True)
                    else:
                        # _save_on_cpu should not be called yet
                        self.assertFalse(_save_on_cpu_called)
                        out = m(inp)
                    if check_offload:
                        self.assertTrue(_save_on_cpu_called)
                    loss = out.sum()
                    loss.backward()
                    losses.append(loss)
                    outputs.append(out)
                    _save_on_cpu_called = False
                self._verify_parity(losses, outputs, models)
        dist.barrier()


instantiate_parametrized_tests(TestFSDPCheckpoint)


class CheckpointModule(nn.Module):
    def __init__(self, checkpoint: bool = False, use_reentrant: bool = True):
        super().__init__()
        self.seq = nn.Sequential(*[nn.Linear(100, 100) for _ in range(4)])
        self.checkpoint = checkpoint
        self.use_reentrant = use_reentrant

    def forward(self, x):
        return (
            checkpoint(self.seq, x, use_reentrant=self.use_reentrant)
            if self.checkpoint
            else self.seq(x)
        )


class ModelWithCheckpointSubmodule(nn.Module):
    def __init__(self, checkpoint: bool = False, use_reentrant: bool = True):
        super().__init__()
        self.l1 = nn.Linear(100, 100)
        self.s1 = CheckpointModule(checkpoint, use_reentrant)
        self.s2 = CheckpointModule(checkpoint, use_reentrant)
        self.relu = nn.ReLU()
        self.l2 = nn.Linear(100, 100)

    def forward(self, x):
        return self.l2(self.relu(self.s2(self.s1(self.l1(x)))))


class TestModel(nn.Module):
    def __init__(self, checkpoint: bool = False, use_reentrant: bool = True):
        super().__init__()
        self.l1 = nn.Linear(100, 100)
        self.relu = nn.ReLU()
        self.checkpoint1 = ModelWithCheckpointSubmodule(checkpoint, use_reentrant)
        self.checkpoint2 = ModelWithCheckpointSubmodule(checkpoint, use_reentrant)
        self.l2 = nn.Linear(100, 100)

    def forward(self, x):
        return self.l2(self.relu(self.checkpoint2(self.checkpoint1(self.l1(x)))))


class TestFSDPCheckpointSubmodule(FSDPTest):
    # TODO: grad value checks occasionally fails when use_reentrant = True
    @skip_if_lt_x_gpu(2)
    @parametrize("use_reentrant", [False])
    def test_checkpoint_submodule(self, device, use_reentrant: bool):
        model = TestModel(use_reentrant=use_reentrant).to(device_type.type)
        model_ac = deepcopy(model)
        for _, m in model_ac.named_modules():
            if isinstance(m, CheckpointModule):
                m.checkpoint = True
        self.assertTrue(model_ac.checkpoint1.s1.checkpoint)
        self.assertTrue(model_ac.checkpoint2.s2.checkpoint)
        fsdp_kwargs = {
            "device_id": device_type.type,
            "sharding_strategy": ShardingStrategy.NO_SHARD,
        }
        # Wrap no checkpointing model submodules with FSDP
        model.checkpoint1 = FSDP(module=model.checkpoint1, **fsdp_kwargs)
        model.checkpoint2 = FSDP(module=model.checkpoint2, **fsdp_kwargs)
        # Wrap checkpointing model submodules with FSDP
        model_ac.checkpoint1 = FSDP(module=model_ac.checkpoint1, **fsdp_kwargs)
        model_ac.checkpoint2 = FSDP(module=model_ac.checkpoint2, **fsdp_kwargs)
        x = torch.randn(2, 100, device=self.device_type)
        model(x).sum().backward()
        model_ac(x).sum().backward()
        for (n1, p1), (n2, p2) in zip(
            model.named_parameters(), model_ac.named_parameters()
        ):
            self.assertEqual(n1, n2)
            self.assertTrue(p1.grad.allclose(p2.grad))


devices = ("cuda", "hpu")
instantiate_device_type_tests(TestFSDPCheckpointSubmodule, globals(), only_for=devices)
if __name__ == "__main__":
    run_tests()