1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
# Owner(s): ["oncall: distributed"]
import contextlib
import sys
from copy import deepcopy
from functools import partial
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
offload_wrapper,
)
from torch.distributed.fsdp import ShardingStrategy
from torch.distributed.fsdp.fully_sharded_data_parallel import (
CPUOffload,
FullyShardedDataParallel as FSDP,
)
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import _maybe_wrap_fsdp, FSDPTest, get_devtype
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
from torch.utils.checkpoint import checkpoint
device_type = torch.device(get_devtype())
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
_save_on_cpu_called = False
def get_patched_save_on_cpu():
orig_save_on_cpu = (
torch.distributed.algorithms._checkpoint.checkpoint_wrapper.save_on_cpu
)
def patched_save_on_cpu(*args, **kwargs):
global _save_on_cpu_called
_save_on_cpu_called = True
return orig_save_on_cpu(*args, **kwargs)
return patched_save_on_cpu
@contextlib.contextmanager
def patch_save_on_cpu(new_save_on_cpu):
orig_save_on_cpu = (
torch.distributed.algorithms._checkpoint.checkpoint_wrapper.save_on_cpu
)
torch.distributed.algorithms._checkpoint.checkpoint_wrapper.save_on_cpu = (
new_save_on_cpu
)
try:
yield
finally:
torch.distributed.algorithms._checkpoint.checkpoint_wrapper.save_on_cpu = (
orig_save_on_cpu
)
class TestFSDPCheckpoint(FSDPTest):
class SequentialModule(nn.Module):
def __init__(
self,
checkpoint_layer=False,
offload_activations=False,
wrap_fsdp=False,
*fsdp_args,
**fsdp_kwargs,
):
torch.manual_seed(0)
super().__init__()
l1 = nn.Linear(3, 3).to(device_type.type)
l2 = nn.Linear(3, 3).to(device_type.type)
l3 = nn.Linear(3, 3).to(device_type.type)
if checkpoint_layer:
if offload_activations:
ckpt_wrapper = offload_wrapper
else:
ckpt_wrapper = checkpoint_wrapper
l1 = ckpt_wrapper(l1)
l2 = ckpt_wrapper(l2)
l3 = ckpt_wrapper(l3)
fsdp_wrapper = partial(
_maybe_wrap_fsdp, *fsdp_args, wrap_fsdp=wrap_fsdp, **fsdp_kwargs
)
self.ffn = nn.Sequential(
fsdp_wrapper(l1),
fsdp_wrapper(l2),
fsdp_wrapper(l3),
)
def forward(self, x):
return self.ffn(x)
def _verify_parity(self, losses, outputs, models):
assert losses
assert outputs
assert models
for l, o in zip(losses[1:], outputs[1:]):
self.assertEqual(losses[0], l)
self.assertEqual(outputs[0], o)
# Verify grads
ref_model = models[0]
ref_grads = [p.grad for p in ref_model.parameters()]
for m in models[1:]:
grads = [p.grad for p in m.parameters()]
for ref_g, g in zip(ref_grads, grads):
self.assertEqual(ref_g, g)
@skip_if_lt_x_gpu(2)
@parametrize(
"cpu_offload",
[CPUOffload(offload_params=True), CPUOffload(offload_params=False)],
)
@parametrize("offload_activations", [True, False])
@parametrize("use_orig_params", [False, True])
def test_checkpoint_fsdp_wrapping(
self,
cpu_offload: CPUOffload,
offload_activations: bool,
use_orig_params: bool,
):
# Test checkpoint(FSDP(layer1), FSDP(layer2), ....)
if offload_activations:
wrapper_to_use = offload_wrapper
else:
wrapper_to_use = checkpoint_wrapper
fsdp_kwargs = {"cpu_offload": cpu_offload, "use_orig_params": use_orig_params}
ckpt_sequential_wrapped_fsdp = wrapper_to_use(
TestFSDPCheckpoint.SequentialModule(
wrap_fsdp=True,
**fsdp_kwargs,
),
)
# Test FSDP(checkpoint(layer1)), FSDP(checkpoint(layer2)), ....
inner_ckpt = TestFSDPCheckpoint.SequentialModule(
checkpoint_layer=True,
offload_activations=offload_activations,
wrap_fsdp=True,
**fsdp_kwargs,
)
baseline = TestFSDPCheckpoint.SequentialModule(
wrap_fsdp=True,
**fsdp_kwargs,
)
# note that reentrant-based checkpointing requires inputs to have grad
# flag set.
inp = torch.randn(10, 3, device=device_type.type, requires_grad=True)
global _save_on_cpu_called
models = [ckpt_sequential_wrapped_fsdp, inner_ckpt, baseline]
with patch_save_on_cpu(get_patched_save_on_cpu()):
for i in range(2):
losses = []
outputs = []
for m in models:
check_offload = m != baseline and i == 0 and offload_activations
if check_offload:
self.assertFalse(_save_on_cpu_called)
out = m(inp)
if check_offload:
self.assertTrue(_save_on_cpu_called)
_save_on_cpu_called = False
loss = out.sum()
loss.backward()
losses.append(loss)
outputs.append(out)
self._verify_parity(losses, outputs, models)
dist.barrier()
@skip_if_lt_x_gpu(2)
@parametrize(
"cpu_offload",
[CPUOffload(offload_params=True), CPUOffload(offload_params=False)],
)
@parametrize("offload_activations", [True, False])
@parametrize("use_orig_params", [False, True])
def test_basic_checkpoint_end_to_end(
self,
cpu_offload: CPUOffload,
offload_activations: bool,
use_orig_params: bool,
):
fsdp_kwargs = {"cpu_offload": cpu_offload, "use_orig_params": use_orig_params}
global _save_on_cpu_called
with patch_save_on_cpu(get_patched_save_on_cpu()):
seq = TestFSDPCheckpoint.SequentialModule().to(device_type.type)
# Runs FSDP with no checkpointing
fsdp_only_seq = FSDP(deepcopy(seq), **fsdp_kwargs)
# Runs checkpoint-wrapped FSDP
if offload_activations:
wrapper_to_use = offload_wrapper
else:
wrapper_to_use = checkpoint_wrapper
checkpointed_fsdp = wrapper_to_use(
FSDP(deepcopy(seq), **fsdp_kwargs),
)
# Runs FSDP-wrapped checkpointed module
fsdp_wrapped_checkpoint = FSDP(
wrapper_to_use(deepcopy(seq)),
**fsdp_kwargs,
)
# Runs FSDP with manual calls to checkpoint.
fsdp_call_checkpoint = FSDP(deepcopy(seq), **fsdp_kwargs)
# note that reentrant-based checkpointing requires inputs to have grad
# flag set.
inp = torch.randn(10, 3, device=device_type.type, requires_grad=True)
models = [
fsdp_only_seq,
checkpointed_fsdp,
fsdp_wrapped_checkpoint,
fsdp_call_checkpoint,
]
# Ensure _save_on_cpu is not yet called
self.assertFalse(_save_on_cpu_called)
for i in range(6):
losses = []
outputs = []
for m in models:
check_offload = (
m != fsdp_only_seq and i == 0 and offload_activations
)
if m == fsdp_call_checkpoint:
# _save_on_cpu should not be called yet
self.assertFalse(_save_on_cpu_called)
offload_ctx = (
get_patched_save_on_cpu()(pin_memory=True)
if offload_activations
else contextlib.nullcontext()
)
with offload_ctx:
out = checkpoint(m, inp, use_reentrant=True)
else:
# _save_on_cpu should not be called yet
self.assertFalse(_save_on_cpu_called)
out = m(inp)
if check_offload:
self.assertTrue(_save_on_cpu_called)
loss = out.sum()
loss.backward()
losses.append(loss)
outputs.append(out)
_save_on_cpu_called = False
self._verify_parity(losses, outputs, models)
dist.barrier()
instantiate_parametrized_tests(TestFSDPCheckpoint)
class CheckpointModule(nn.Module):
def __init__(self, checkpoint: bool = False, use_reentrant: bool = True):
super().__init__()
self.seq = nn.Sequential(*[nn.Linear(100, 100) for _ in range(4)])
self.checkpoint = checkpoint
self.use_reentrant = use_reentrant
def forward(self, x):
return (
checkpoint(self.seq, x, use_reentrant=self.use_reentrant)
if self.checkpoint
else self.seq(x)
)
class ModelWithCheckpointSubmodule(nn.Module):
def __init__(self, checkpoint: bool = False, use_reentrant: bool = True):
super().__init__()
self.l1 = nn.Linear(100, 100)
self.s1 = CheckpointModule(checkpoint, use_reentrant)
self.s2 = CheckpointModule(checkpoint, use_reentrant)
self.relu = nn.ReLU()
self.l2 = nn.Linear(100, 100)
def forward(self, x):
return self.l2(self.relu(self.s2(self.s1(self.l1(x)))))
class TestModel(nn.Module):
def __init__(self, checkpoint: bool = False, use_reentrant: bool = True):
super().__init__()
self.l1 = nn.Linear(100, 100)
self.relu = nn.ReLU()
self.checkpoint1 = ModelWithCheckpointSubmodule(checkpoint, use_reentrant)
self.checkpoint2 = ModelWithCheckpointSubmodule(checkpoint, use_reentrant)
self.l2 = nn.Linear(100, 100)
def forward(self, x):
return self.l2(self.relu(self.checkpoint2(self.checkpoint1(self.l1(x)))))
class TestFSDPCheckpointSubmodule(FSDPTest):
# TODO: grad value checks occasionally fails when use_reentrant = True
@skip_if_lt_x_gpu(2)
@parametrize("use_reentrant", [False])
def test_checkpoint_submodule(self, device, use_reentrant: bool):
model = TestModel(use_reentrant=use_reentrant).to(device_type.type)
model_ac = deepcopy(model)
for _, m in model_ac.named_modules():
if isinstance(m, CheckpointModule):
m.checkpoint = True
self.assertTrue(model_ac.checkpoint1.s1.checkpoint)
self.assertTrue(model_ac.checkpoint2.s2.checkpoint)
fsdp_kwargs = {
"device_id": device_type.type,
"sharding_strategy": ShardingStrategy.NO_SHARD,
}
# Wrap no checkpointing model submodules with FSDP
model.checkpoint1 = FSDP(module=model.checkpoint1, **fsdp_kwargs)
model.checkpoint2 = FSDP(module=model.checkpoint2, **fsdp_kwargs)
# Wrap checkpointing model submodules with FSDP
model_ac.checkpoint1 = FSDP(module=model_ac.checkpoint1, **fsdp_kwargs)
model_ac.checkpoint2 = FSDP(module=model_ac.checkpoint2, **fsdp_kwargs)
x = torch.randn(2, 100, device=self.device_type)
model(x).sum().backward()
model_ac(x).sum().backward()
for (n1, p1), (n2, p2) in zip(
model.named_parameters(), model_ac.named_parameters()
):
self.assertEqual(n1, n2)
self.assertTrue(p1.grad.allclose(p2.grad))
devices = ("cuda", "hpu")
instantiate_device_type_tests(TestFSDPCheckpointSubmodule, globals(), only_for=devices)
if __name__ == "__main__":
run_tests()
|