1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
# Owner(s): ["oncall: distributed"]
import copy
import sys
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch._utils import _get_device_module
from torch.distributed.fsdp import BackwardPrefetch, CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_devtype
from torch.testing._internal.common_utils import (
run_tests,
TEST_CUDA,
TEST_WITH_DEV_DBG_ASAN,
)
device_type = torch.device(get_devtype())
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
class LinearUnusedInput(nn.Linear):
def forward(self, frozen_input, learnable_input):
return super().forward(frozen_input)
class ModelUnusedInput(nn.Module):
def __init__(self, freeze: bool):
super().__init__()
self.layer0 = LinearUnusedInput(4, 4)
self.layer1_frozen = LinearUnusedInput(4, 4)
if freeze:
for param in self.layer1_frozen.parameters():
param.requires_grad = False
self.layer2 = LinearUnusedInput(4, 4)
def forward(self, frozen_input, learnable_input):
x = self.layer0(frozen_input, learnable_input)
y = self.layer1_frozen(frozen_input, learnable_input)
z = self.layer2(frozen_input, learnable_input)
return torch.concat([x, y, z, learnable_input])
class TestFSDPFineTune(FSDPTest):
"""Tests fine-tuning cases where some parameters are frozen."""
NUM_LINEARS = 6
@property
def world_size(self) -> int:
return min(_get_device_module(self.device_type).device_count(), 2)
def _init_seq_module(self, device) -> nn.Module:
torch.manual_seed(42)
modules = []
for _ in range(self.NUM_LINEARS):
modules += [nn.Linear(5, 5, device=device), nn.ReLU()]
seq = nn.Sequential(*modules)
self._set_seq_module_requires_grad(seq, False)
return seq
def _set_seq_module_requires_grad(self, seq: nn.Module, requires_grad: bool):
# Assume that the linears are leaf modules, meaning that we can pass
# `recurse=True` to have this to work for both pre/post FSDP wrapping
for i in range(self.NUM_LINEARS):
# Only set for every other linear to test mixing frozen/non-frozen
if i % 2 == 0:
for param in seq[i * 2].parameters(recurse=True):
param.requires_grad = requires_grad
@skip_if_lt_x_gpu(2)
def test_backward_reshard_hooks(self, device):
"""
Tests that the post-backward reshard happens even for flat parameters
that do not require gradients.
"""
self.run_subtests(
{
"device_id": [device],
"sharding_strategy": [
ShardingStrategy.FULL_SHARD,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
],
"use_orig_params": [False, True],
"inp_requires_grad": [False, True],
"unfreeze_params": [False, True],
},
self._test_backward_reshard_hooks,
)
def _test_backward_reshard_hooks(
self,
device_id,
sharding_strategy: ShardingStrategy,
use_orig_params: bool,
inp_requires_grad: bool,
unfreeze_params: bool,
):
seq = self._init_seq_module(device_type)
policy = ModuleWrapPolicy({nn.Linear})
fsdp_kwargs = {"device_id": device_type}
seq = FSDP(
seq,
auto_wrap_policy=policy,
sharding_strategy=sharding_strategy,
use_orig_params=use_orig_params,
**fsdp_kwargs,
)
orig_post_backward_reshard = (
torch.distributed.fsdp._runtime_utils._post_backward_reshard
)
post_backward_reshard_count = 0
def _post_backward_reshard_with_count(*args, **kwargs):
nonlocal post_backward_reshard_count
post_backward_reshard_count += 1
return orig_post_backward_reshard(*args, **kwargs)
def _assert_post_backward_requires_grad(seq):
if step_idx == num_steps - 1 and unfreeze_params:
self.assertTrue(
all(p.requires_grad for p in seq.parameters()),
msg="Expected all parameters to require grad but some did not!",
)
def _assert_post_backward_reshard_count(step_idx, num_steps):
if step_idx < num_steps - 1 or not unfreeze_params:
# If the input does not require gradient, then the 0th
# frozen linear gets resharded in the catch-all reshard
# since we cannot register an autograd hook on it
expected_post_backward_reshard_count = (
self.NUM_LINEARS if inp_requires_grad else self.NUM_LINEARS - 1
)
else:
# This follows the normal post-backward hook path
expected_post_backward_reshard_count = self.NUM_LINEARS
self.assertEqual(
post_backward_reshard_count, expected_post_backward_reshard_count
)
with mock.patch(
"torch.distributed.fsdp._runtime_utils._post_backward_reshard",
_post_backward_reshard_with_count,
):
num_steps = 3
# interleave a `no_grad` step to validate post-backward hooks are not registered in that context
# and that `requires_grad` is reset appropriately when unfreezing
nograd_step_idx = 1
for step_idx in range(num_steps):
if unfreeze_params and step_idx == num_steps - 1:
# Unfreeze the parameters on the last step to emulate some
# kinds of fine-tuning
self._set_seq_module_requires_grad(seq, True)
inp = torch.randn(
(8, 5), device=device_type, requires_grad=inp_requires_grad
)
if step_idx == nograd_step_idx:
with torch.no_grad():
output = seq(inp)
else:
output = seq(inp)
if step_idx != nograd_step_idx:
output.sum().backward()
_assert_post_backward_requires_grad(seq)
_assert_post_backward_reshard_count(step_idx, num_steps)
post_backward_reshard_count = 0
def _init_multi_traversal_module(self, device) -> nn.Module:
torch.manual_seed(42)
class TestModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.layer_0 = nn.Linear(5, 5, device=device)
self.layer_no_grad = nn.Linear(5, 5, device=device)
self.layer_with_grad = nn.Linear(5, 5, device=device)
self.layer_no_grad.requires_grad_(False)
def forward(self, x):
# Layer `layer_no_grad` and `layer_with_grad` are called
# multiple times, IOW, their parameters are used multiple times
# during forward pass.
x = self.layer_0(x)
for _ in range(10):
x = self.layer_no_grad(self.layer_with_grad(x))
# Make sure calling the same layer multiple times works
# regardless whether gradient is enabled.
with torch.no_grad():
x += self.layer_with_grad(x)
return x
return TestModule()
@skip_if_lt_x_gpu(2)
def test_hooks_multi_traversal(self):
"""
Tests that the hooks do reshard / unshard correctly in the case of same
parameters being used multiple times during forward pass.
"""
self.run_subtests(
{
"sharding_strategy": [
ShardingStrategy.FULL_SHARD,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
],
"use_orig_params": [False, True],
"inp_requires_grad": [False, True],
"forward_prefetch": [False, True],
},
self._test_hooks_multi_traversal,
)
def _test_hooks_multi_traversal(
self,
sharding_strategy: ShardingStrategy,
use_orig_params: bool,
inp_requires_grad: bool,
forward_prefetch: bool,
):
seq = self._init_multi_traversal_module(device_type.type)
policy = ModuleWrapPolicy({nn.Linear})
fsdp_kwargs = {"device_id": device_type}
fsdp_seq = FSDP(
copy.deepcopy(seq),
auto_wrap_policy=policy,
sharding_strategy=sharding_strategy,
use_orig_params=use_orig_params,
forward_prefetch=forward_prefetch,
**fsdp_kwargs,
)
ddp_seq = DDP(copy.deepcopy(seq), device_ids=[device_type])
fsdp_optim = torch.optim.Adam(fsdp_seq.parameters(), lr=1e-2)
ddp_optim = torch.optim.Adam(ddp_seq.parameters(), lr=1e-2)
torch.manual_seed(self.rank + 1)
losses = []
for _ in range(6):
inp = torch.randn(
(8, 5), device=device_type, requires_grad=inp_requires_grad
)
for seq, optim in ((fsdp_seq, fsdp_optim), (ddp_seq, ddp_optim)):
loss = seq(inp).sum()
losses.append(loss)
loss.backward()
optim.step()
optim.zero_grad()
torch.testing.assert_close(losses[0], losses[1])
losses.clear()
@skip_if_lt_x_gpu(2)
def test_parity_with_ddp(self):
"""
Tests parity with DDP when mixing flat parameters that require and do
not require gradients.
"""
self.run_subtests(
{
"sharding_strategy": [
ShardingStrategy.FULL_SHARD,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
],
"use_orig_params": [False, True],
},
self._test_parity_with_ddp,
)
def _test_parity_with_ddp(
self,
sharding_strategy: ShardingStrategy,
use_orig_params: bool,
):
seq = self._init_seq_module(device_type)
policy = ModuleWrapPolicy({nn.Linear})
fsdp_kwargs = {"device_id": device_type}
fsdp_seq = FSDP(
copy.deepcopy(seq),
auto_wrap_policy=policy,
sharding_strategy=sharding_strategy,
use_orig_params=use_orig_params,
**fsdp_kwargs,
)
ddp_seq = DDP(copy.deepcopy(seq), device_ids=[device_type])
fsdp_optim = torch.optim.Adam(fsdp_seq.parameters(), lr=1e-2)
ddp_optim = torch.optim.Adam(ddp_seq.parameters(), lr=1e-2)
torch.manual_seed(self.rank + 1)
losses = []
for _ in range(6):
inp = torch.randn((8, 5), device=device_type.type)
for seq, optim in ((fsdp_seq, fsdp_optim), (ddp_seq, ddp_optim)):
loss = seq(inp).sum()
losses.append(loss)
loss.backward()
optim.step()
optim.zero_grad()
if TEST_CUDA:
torch.testing.assert_close(losses[0], losses[1])
else:
torch.testing.assert_close(losses[0], losses[1], atol=1e-03, rtol=1e-03)
losses.clear()
@skip_if_lt_x_gpu(2)
def test_parity_with_non_frozen_fsdp(self, device):
"""
For frozen modules with unused input, reshard could happen without unshard
Verify numerical parity between `_post_backward_reshard_only_hook` and
`_post_backward_hook` path
"""
self.run_subtests(
{
"device_id": [device],
"sharding_strategy": [
ShardingStrategy.FULL_SHARD,
ShardingStrategy.SHARD_GRAD_OP,
],
"use_orig_params": [True, False],
"offload_params": [True, False],
"mixed_precision": [
MixedPrecision(),
MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
),
],
"backward_prefetch": [
BackwardPrefetch.BACKWARD_PRE,
BackwardPrefetch.BACKWARD_POST,
],
},
self._test_parity_with_non_frozen_fsdp,
)
def _test_parity_with_non_frozen_fsdp(
self,
device_id,
sharding_strategy: ShardingStrategy,
use_orig_params: bool,
offload_params: bool,
mixed_precision: MixedPrecision,
backward_prefetch: BackwardPrefetch,
):
torch.manual_seed(42)
model = ModelUnusedInput(freeze=True).to(device_type)
torch.manual_seed(42)
ref_model = ModelUnusedInput(freeze=False).to(device_type)
fsdp_kwargs = {
"device_id": device_type,
"auto_wrap_policy": ModuleWrapPolicy({LinearUnusedInput}),
"sharding_strategy": sharding_strategy,
"use_orig_params": use_orig_params,
"cpu_offload": CPUOffload(offload_params=offload_params),
"mixed_precision": mixed_precision,
"backward_prefetch": backward_prefetch,
}
model = FSDP(model, **fsdp_kwargs)
ref_model = FSDP(ref_model, **fsdp_kwargs)
model_optim = torch.optim.Adam(model.parameters(), lr=1e-2)
ref_model_optim = torch.optim.Adam(
[
param
for name, param in ref_model.named_parameters()
if not name.startswith("_fsdp_wrapped_module.layer1_frozen")
],
lr=1e-2,
)
torch.manual_seed(self.rank + 1)
losses = []
for idx in range(6):
frozen_input = torch.randn((4, 4), device=device_type, requires_grad=False)
learnable_input = torch.randn(
(4, 4), device=device_type, requires_grad=True
)
for _model, _optim in ((model, model_optim), (ref_model, ref_model_optim)):
loss = _model(frozen_input, frozen_input).sum()
losses.append(loss)
loss.backward()
_optim.step()
_optim.zero_grad()
self.assertEqual(losses[0], losses[1])
losses.clear()
with FSDP.summon_full_params(model):
with FSDP.summon_full_params(ref_model):
for param, ref_param in zip(model.parameters(), ref_model.parameters()):
self.assertEqual(param, ref_param)
devices = ("cuda", "hpu")
instantiate_device_type_tests(TestFSDPFineTune, globals(), only_for=devices)
if __name__ == "__main__":
run_tests()
|