File: test_fsdp_flatten_params.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (654 lines) | stat: -rw-r--r-- 24,154 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
# Owner(s): ["oncall: distributed"]

import sys

import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._flat_param import (
    FlatParamHandle,
    FlatParamShardMetadata,
    HandleShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
    TEST_WITH_DEV_DBG_ASAN,
)


if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)

if TEST_WITH_DEV_DBG_ASAN:
    print(
        "Skip dev-asan as torch + multiprocessing spawn have known issues",
        file=sys.stderr,
    )
    sys.exit(0)


class TestFlattenParams(FSDPTest):
    """Tests parameter flattening and shard metadata logic."""

    @property
    def world_size(self) -> int:
        # Clamp the world size to 1 since these unit tests either exercise only
        # the flattening logic or check sharding subroutines directly without
        # requiring multiple ranks
        return 1

    def _get_default_config(self):
        return {
            "device": torch.device("cuda"),
            "sharding_strategy": HandleShardingStrategy.FULL_SHARD,
            "offload_params": False,
            "mp_param_dtype": None,
            "mp_reduce_dtype": None,
            "keep_low_precision_grads": False,
            "process_group": self.process_group,
            "use_orig_params": False,
            "fsdp_extension": None,
        }

    def _get_transformer(self, seed=0):
        torch.manual_seed(seed)  # keep everything deterministic
        module = torch.nn.Transformer(
            d_model=32,
            num_encoder_layers=2,
            num_decoder_layers=2,
            dim_feedforward=128,
            dropout=0.1,
        )
        module.dummy_buffer = nn.Buffer(torch.tensor(1.0))

        def get_input(device, dtype):
            torch.manual_seed(1)  # keep everything deterministic
            src = torch.rand(20, 8, 32).to(device=device, dtype=dtype)  # T x B x C
            tgt = torch.rand(10, 8, 32).to(device=device, dtype=dtype)  # T x B x C
            return (src, tgt)

        module.get_input = get_input
        return module

    def _get_shared_params_transformer(self, seed=0):
        module = self._get_transformer(seed=seed)
        # share the FFNs
        for enc_layer, dec_layer in zip(module.encoder.layers, module.decoder.layers):
            dec_layer.linear1.weight = enc_layer.linear1.weight
            dec_layer.linear2.weight = enc_layer.linear2.weight
        return module

    @skip_if_lt_x_gpu(1)
    def test_partial_flattening(self):
        """Tests flattening some submodules but not others."""
        self.run_subtests(
            {"half": [False, True]},
            self._test_partial_flattening,
        )

    def _test_partial_flattening(self, half: bool):
        module = self._get_transformer()
        if half:
            module = module.half()
        numel = sum(p.numel() for p in module.parameters())

        encoder_1_params = list(module.encoder.layers[1].parameters())
        decoder_0_params = list(module.decoder.layers[0].parameters())
        params_to_flatten = encoder_1_params + decoder_0_params
        num_params = [len(encoder_1_params), len(decoder_0_params)]
        numel_to_flatten = sum(p.numel() for p in params_to_flatten)
        module.encoder.layers[1] = FSDP(module.encoder.layers[1])
        module.decoder.layers[0] = FSDP(module.decoder.layers[0])
        flat_params = [
            module.encoder.layers[1]._flat_param,
            module.decoder.layers[0]._flat_param,
        ]

        self.assertEqual(sum(fp.numel() for fp in flat_params), numel_to_flatten)
        self.assertEqual(sum(p.numel() for p in module.parameters()), numel)

        # Check that flattened parameters have been replaced with a single
        # `FlatParameter`
        self.assertEqual(len(list(module.encoder.layers[1].parameters())), 1)
        self.assertEqual(len(list(module.decoder.layers[0].parameters())), 1)

        # Check that non-flattened parameters remain
        self.assertEqual(
            len(list(module.encoder.layers[0].parameters())), num_params[0]
        )
        self.assertEqual(
            len(list(module.decoder.layers[1].parameters())), num_params[1]
        )

        # Check that calling `module.to()` affects the `FlatParameter`s
        orig_dtype = params_to_flatten[0].dtype
        new_dtype = torch.float32 if orig_dtype == torch.float16 else torch.float16
        for flat_param in flat_params:
            self.assertEqual(flat_param.dtype, orig_dtype)
        self.assertTrue(
            all(p.dtype == orig_dtype for p in module.encoder.layers[0].parameters())
        )
        module = module.to(dtype=new_dtype)
        for flat_param in flat_params:
            self.assertEqual(flat_param.dtype, new_dtype)
        self.assertTrue(
            all(p.dtype == new_dtype for p in module.encoder.layers[0].parameters())
        )

    def test_flatten_nothing(self):
        """
        Tests that constructing a ``FlatParamHandle`` with no parameters
        raises an error.
        """
        self.run_subtests(
            {"half": [False, True]},
            self._test_flatten_nothing,
        )

    def _test_flatten_nothing(self, half: bool):
        module = self._get_transformer()
        if half:
            module = module.half()
        with self.assertRaisesRegex(
            ValueError,
            "Cannot construct a FlatParamHandle with an empty parameter list",
        ):
            FlatParamHandle(
                [],
                module,
                **self._get_default_config(),
            )

    @skip_if_lt_x_gpu(1)
    def test_empty_module(self):
        """
        Tests flattening an empty module (i.e. one without any parameters).
        """
        module = self._get_empty_module()
        in_data = torch.rand(1)
        ref_out = module(in_data)
        fsdp_module = FSDP(module)
        self.assertEqual(len(list(fsdp_module.parameters())), 0)
        self.assertIsNone(fsdp_module._flat_param)
        fsdp_out = fsdp_module(in_data)
        self.assertEqual(ref_out, fsdp_out)

    def _get_empty_module(self):
        """Returns a module with no parameters."""
        torch.manual_seed(0)  # keep everything deterministic

        class EmptyModule(torch.nn.Module):
            def forward(self, x):
                return x + 1

            def get_input(self, device, dtype):
                torch.manual_seed(1)  # keep everything deterministic
                return torch.rand(1).to(device=device, dtype=dtype)

        return EmptyModule()

    def test_numel_without_shared_params(self):
        """
        Tests that numel is preserved after flattening when there are no shared
        parameters in the module.
        """
        self.run_subtests(
            {"half": [False, True]},
            self._test_numel_without_shared_params,
        )

    def _test_numel_without_shared_params(self, half: bool):
        module = self._get_transformer()
        if half:
            module = module.half()
        self._test_numel(module)

    def test_numel_with_shared_params(self):
        """
        Tests that numel is preserved after flattening when there are shared
        parameters in the module.
        """
        self.run_subtests(
            {"half": [False, True]},
            self._test_numel_with_shared_params,
        )

    def _test_numel_with_shared_params(self, half: bool):
        module = self._get_shared_params_transformer()
        if half:
            module = module.half()
        self._test_numel(module)

    def _test_numel(self, module):
        ref_numel = sum(p.numel() for p in module.parameters())
        params_to_flatten = list(module.parameters())
        flat_param_handle = FlatParamHandle(
            params_to_flatten,
            module,
            **self._get_default_config(),
        )
        self.assertEqual(ref_numel, flat_param_handle.flat_param.numel())

    @skip_if_lt_x_gpu(1)
    def test_output_without_shared_params(self):
        """
        Tests a forward pass after flattening when there are no shared
        parameters in the module.
        """
        self.run_subtests(
            {"half": [False, True]},
            self._test_output_without_shared_params,
        )

    def _test_output_without_shared_params(self, half: bool):
        module = self._get_transformer()
        if half:
            module = module.half()
        self._test_output(module)

    @skip_if_lt_x_gpu(1)
    def test_output_with_shared_params(self):
        """
        Tests a forward pass after flattening when there are shared parameters
        in the module.
        """
        self.run_subtests(
            {"half": [False, True]},
            self._test_output_with_shared_params,
        )

    def _test_output_with_shared_params(self, half: bool):
        module = self._get_shared_params_transformer()
        if half:
            module = module.half()
        self._test_output(module)

    def _test_output(self, module: nn.Module):
        module = module.to(self.rank)
        ref_output = self._get_output(module)
        fsdp_module = FSDP(module)
        fsdp_output = self._get_output(fsdp_module)
        self.assertEqual(ref_output, fsdp_output)

    def _get_output(self, module):
        device = next(module.parameters()).device
        dtype = next(module.parameters()).dtype
        input = module.get_input(device, dtype)
        return module(*input)

    @skip_if_lt_x_gpu(1)
    def test_pnorm_after_step_with_shared_params(self):
        """
        Tests for parameter Frobenius norm parity after an optimizer step when
        there are shared parameters in the module. If the parameter sharing is
        handled incorrectly, then an optimizer step should reveal that.
        """
        self.run_subtests(
            {"half": [False, True]},
            self._test_pnorm_after_step_with_shared_params,
        )

    def _test_pnorm_after_step_with_shared_params(self, half: bool):
        module = self._get_shared_params_transformer().to(self.rank)
        if half:
            module = module.half()
        ref_pnorm_after_step = self._get_pnorm_after_step(module)
        module = self._get_shared_params_transformer().to(self.rank)  # recreate
        if half:
            module = module.half()
        fsdp_module = FSDP(module)
        fsdp_pnorm_after_step = self._get_pnorm_after_step(fsdp_module)
        self.assertEqual(ref_pnorm_after_step, fsdp_pnorm_after_step)

    def _get_pnorm_after_step(self, module):
        optim = torch.optim.SGD(module.parameters(), lr=0.01)
        loss = self._get_output(module).sum()
        loss.backward()
        optim.step()
        return torch.norm(torch.stack([p.detach().norm() for p in module.parameters()]))

    def test_flat_param_shard_metadata_unaligned(self):
        """
        Tests that ``FlatParameter`` shard metadata are computed as expected
        without any explicit alignment padding.
        """
        module = torch.nn.Sequential(
            torch.nn.Linear(10, 10, bias=False),
            nn.ReLU(),
            torch.nn.Linear(10, 10, bias=False),
            nn.ReLU(),
            torch.nn.Linear(10, 10, bias=False),
            nn.ReLU(),
        )
        params_to_flatten = list(module.parameters())
        handle = FlatParamHandle(
            params_to_flatten,
            module,
            **self._get_default_config(),
        )

        self._test_flat_param_shard_metadata(
            handle,
            start=0,
            end=0,
            expected=FlatParamShardMetadata(
                param_names=["0.weight"],
                param_shapes=[(10, 10)],
                param_strides=[(10, 1)],
                param_contiguities=[True],
                param_numels=[100],
                param_offsets=[(0, 0)],
            ),
        )
        self._test_flat_param_shard_metadata(
            handle,
            start=0,
            end=50,
            expected=FlatParamShardMetadata(
                param_names=["0.weight"],
                param_shapes=[(10, 10)],
                param_strides=[(10, 1)],
                param_contiguities=[True],
                param_numels=[100],
                param_offsets=[(0, 50)],
            ),
        )
        self._test_flat_param_shard_metadata(
            handle,
            start=0,
            end=99,
            expected=FlatParamShardMetadata(
                param_names=["0.weight"],
                param_shapes=[(10, 10)],
                param_strides=[(10, 1)],
                param_contiguities=[True],
                param_numels=[100],
                param_offsets=[(0, 99)],
            ),
        )
        self._test_flat_param_shard_metadata(
            handle,
            start=50,
            end=149,
            expected=FlatParamShardMetadata(
                param_names=["0.weight", "2.weight"],
                param_shapes=[(10, 10), (10, 10)],
                param_strides=[(10, 1), (10, 1)],
                param_contiguities=[True, True],
                param_numels=[100, 100],
                param_offsets=[(50, 99), (0, 49)],
            ),
        )
        self._test_flat_param_shard_metadata(
            handle,
            start=50,
            end=199,
            expected=FlatParamShardMetadata(
                param_names=["0.weight", "2.weight"],
                param_shapes=[(10, 10), (10, 10)],
                param_strides=[(10, 1), (10, 1)],
                param_contiguities=[True, True],
                param_numels=[100, 100],
                param_offsets=[(50, 99), (0, 99)],
            ),
        )
        self._test_flat_param_shard_metadata(
            handle,
            start=99,
            end=199,
            expected=FlatParamShardMetadata(
                param_names=["0.weight", "2.weight"],
                param_shapes=[(10, 10), (10, 10)],
                param_strides=[(10, 1), (10, 1)],
                param_contiguities=[True, True],
                param_numels=[100, 100],
                param_offsets=[(99, 99), (0, 99)],
            ),
        )
        self._test_flat_param_shard_metadata(
            handle,
            start=100,
            end=199,
            expected=FlatParamShardMetadata(
                param_names=["2.weight"],
                param_shapes=[(10, 10)],
                param_strides=[(10, 1)],
                param_contiguities=[True],
                param_numels=[100],
                param_offsets=[(0, 99)],
            ),
        )
        self._test_flat_param_shard_metadata(
            handle,
            start=100,
            end=299,
            expected=FlatParamShardMetadata(
                param_names=["2.weight", "4.weight"],
                param_shapes=[(10, 10), (10, 10)],
                param_strides=[(10, 1), (10, 1)],
                param_contiguities=[True, True],
                param_numels=[100, 100],
                param_offsets=[(0, 99), (0, 99)],
            ),
        )
        self._test_flat_param_shard_metadata(
            handle,
            start=100,
            end=1000,
            expected=FlatParamShardMetadata(
                param_names=["2.weight", "4.weight"],
                param_shapes=[(10, 10), (10, 10)],
                param_strides=[(10, 1), (10, 1)],
                param_contiguities=[True, True],
                param_numels=[100, 100],
                param_offsets=[(0, 99), (0, 99)],
            ),
        )
        self._test_flat_param_shard_metadata(
            handle,
            start=299,
            end=299,
            expected=FlatParamShardMetadata(
                param_names=["4.weight"],
                param_shapes=[(10, 10)],
                param_strides=[(10, 1)],
                param_contiguities=[True],
                param_numels=[100],
                param_offsets=[(99, 99)],
            ),
        )

    def test_flat_param_shard_metadata_aligned_full_precision(self):
        """
        Tests that ``FlatParameter`` shard metadata are computed as expected
        with alignment padding and parameter full precision.
        """
        module = torch.nn.Sequential(
            torch.nn.Linear(3, 7, bias=False),  # 0.weight
            torch.nn.Linear(7, 5, bias=False),  # 1.weight
            torch.nn.Linear(5, 5, bias=False),  # 2.weight
        )
        params_to_flatten = list(module.parameters())
        handle_kwargs = self._get_default_config()
        handle_kwargs["use_orig_params"] = True
        handle = FlatParamHandle(params_to_flatten, module, **handle_kwargs)
        # For 32-bit full precision, FSDP pads up to 3 numel after each
        # original parameter to achieve 0 mod 4 numel (i.e. 0 mod 16 bytes).
        # Thus, the unsharded `FlatParameter` layout looks like:
        #   21 + (3) + 35 + (1) + 25
        # where (x) means x numel of padding. This gives a total of 85 numel.

        # The `FlatParamShardMetadata` do not include alignment padding but do
        # account for them
        self._test_flat_param_shard_metadata(
            handle,
            # Emulate rank 0 of 2 ranks
            start=0,
            end=42,
            expected=FlatParamShardMetadata(
                param_names=["0.weight", "1.weight"],
                param_shapes=[(7, 3), (5, 7)],
                param_strides=[(3, 1), (7, 1)],
                param_contiguities=[True, True],
                param_numels=[21, 35],
                # 21 + (3) + 19 = 43
                param_offsets=[(0, 20), (0, 18)],
            ),
        )
        self._test_flat_param_shard_metadata(
            handle,
            # Emulate rank 1 of 2 ranks
            start=43,
            end=85,
            expected=FlatParamShardMetadata(
                param_names=["1.weight", "2.weight"],
                param_shapes=[(5, 7), (5, 5)],
                param_strides=[(7, 1), (5, 1)],
                param_contiguities=[True, True],
                param_numels=[35, 25],
                # 16 + (1) + 25 = 42
                param_offsets=[(19, 34), (0, 24)],
            ),
        )

    def test_flat_param_shard_metadata_aligned_mixed_precision(self):
        """
        Tests that ``FlatParameter`` shard metadata are computed as expected
        with alignment padding and parameter mixed precision.
        """
        module = torch.nn.Sequential(
            torch.nn.Linear(2, 5, bias=False),  # 0.weight
            torch.nn.Linear(5, 5, bias=False),  # 1.weight
            torch.nn.Linear(5, 3, bias=False),  # 2.weight
        )
        params_to_flatten = list(module.parameters())
        handle_kwargs = self._get_default_config()
        handle_kwargs["use_orig_params"] = True
        handle_kwargs["mp_param_dtype"] = torch.float16
        handle = FlatParamHandle(params_to_flatten, module, **handle_kwargs)
        # For 16-bit mixed precision, FSDP pads up to 7 numel after each
        # original parameter to achieve 0 mod 8 numel (i.e. 0 mod 16 bytes).
        # Thus, the unsharded `FlatParameter` layout looks like:
        #   10 + (6) + 25 + (7) + 15
        # where (x) means x numel of padding. This gives a total of 63 numel.

        # The `FlatParamShardMetadata` do not include alignment padding but do
        # account for them
        self._test_flat_param_shard_metadata(
            handle,
            # Emulate rank 0 of 2 ranks
            start=0,
            end=31,
            expected=FlatParamShardMetadata(
                param_names=["0.weight", "1.weight"],
                param_shapes=[(5, 2), (5, 5)],
                param_strides=[(2, 1), (5, 1)],
                param_contiguities=[True, True],
                param_numels=[10, 25],
                # 10 + (6) + 16 = 32
                param_offsets=[(0, 9), (0, 15)],
            ),
        )
        self._test_flat_param_shard_metadata(
            handle,
            # Emulate rank 1 of 2 ranks
            start=32,
            end=63,
            expected=FlatParamShardMetadata(
                param_names=["1.weight", "2.weight"],
                param_shapes=[(5, 5), (3, 5)],
                param_strides=[(5, 1), (5, 1)],
                param_contiguities=[True, True],
                param_numels=[25, 15],
                # 9 + (7) + 15 = 31
                param_offsets=[(16, 24), (0, 14)],
            ),
        )

    def _test_flat_param_shard_metadata(
        self,
        handle: FlatParamHandle,
        start: int,
        end: int,
        expected: FlatParamShardMetadata,
    ):
        """
        Tests the subroutine ``_get_shard_metadata()`` that computes shard
        metadata based on start and end indices in the unsharded flat
        parameter, where both indices are inclusive.

        We manually set the relevant attributes on the flat parameter to be
        able to check the effect of ``_get_shard_metadata()`` via
        ``shard_metadata()`` since normally the attributes are set in
        ``_init_shard_metadata()`` with the start and end indices fixed based
        on rank and world size.
        """
        flat_param = handle.flat_param
        flat_param._shard_param_infos = handle._get_shard_metadata(start, end)
        shard_metadata = handle.shard_metadata()
        self.assertEqual(
            shard_metadata,
            expected,
            msg=f"{handle.shard_metadata()}, {expected}",
        )

    @parametrize("memory_format", [torch.contiguous_format, torch.channels_last])
    def test_flat_param_shard_metadata_with_memory_format(self, memory_format):
        """
        Tests that ``FlatParameter`` shard metadata are computed as expected
        with alignment padding and parameter full precision.
        """
        module = torch.nn.Sequential(
            torch.nn.Conv2d(10, 20, 3, bias=False),  # 0.weight, 1800 params
            torch.nn.Conv2d(20, 10, 5, bias=False),  # 1.weight, 5000 params
            torch.nn.Conv2d(10, 10, 1, bias=False),  # 2.weight, 100 params
        ).to(memory_format=memory_format)
        params_to_flatten = list(module.parameters())
        handle_kwargs = self._get_default_config()
        handle_kwargs["use_orig_params"] = True
        handle = FlatParamHandle(params_to_flatten, module, **handle_kwargs)
        contiguous_tensors = memory_format == torch.contiguous_format
        self._test_flat_param_shard_metadata(
            handle,
            # Emulate rank 0 of 2 ranks
            start=0,
            end=2999,
            expected=FlatParamShardMetadata(
                param_names=["0.weight", "1.weight"],
                param_shapes=[(20, 10, 3, 3), (10, 20, 5, 5)],
                param_strides=[(90, 9, 3, 1), (500, 25, 5, 1)]
                if contiguous_tensors
                else [(90, 1, 30, 10), (500, 1, 100, 20)],
                param_contiguities=[contiguous_tensors, contiguous_tensors],
                param_numels=[1800, 5000],
                param_offsets=[(0, 1799), (0, 1199)],
            ),
        )
        self._test_flat_param_shard_metadata(
            handle,
            # Emulate rank 1 of 2 ranks
            start=3000,
            end=6899,
            expected=FlatParamShardMetadata(
                param_names=["1.weight", "2.weight"],
                param_shapes=[(10, 20, 5, 5), (10, 10, 1, 1)],
                param_strides=[(500, 25, 5, 1), (10, 1, 1, 1)]
                if contiguous_tensors
                else [(500, 1, 100, 20), (10, 1, 10, 10)],
                param_contiguities=[contiguous_tensors, contiguous_tensors],
                param_numels=[5000, 100],
                param_offsets=[(1200, 4999), (0, 99)],
            ),
        )


instantiate_parametrized_tests(TestFlattenParams)

if __name__ == "__main__":
    run_tests()