1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
# Owner(s): ["oncall: distributed"]
import contextlib
import sys
from collections import Counter
from enum import auto, Enum
from functools import partial
from typing import List, Optional, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.distributed_c10d import _rank_not_in_group
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp._init_utils import (
_init_intra_and_inter_node_groups,
HYBRID_SHARDING_STRATEGIES,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
DEVICEInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
@contextlib.contextmanager
def patch_allreduce(new_allreduce):
"""
Patches dist.all_reduce with a new all_reduce and
restores upon exiting.
"""
orig_ar = dist.all_reduce
dist.all_reduce = new_allreduce
try:
yield
finally:
dist.all_reduce = orig_ar
@contextlib.contextmanager
def patch_reduce_scatter(new_reduce_scatter):
"""
Patches dist.reduce_scatter_tensor with a new reduce_scatter_tensor and
restores upon exiting.
"""
orig_reduce_scatter = dist.reduce_scatter_tensor
dist.reduce_scatter_tensor = new_reduce_scatter
try:
yield
finally:
dist.reduce_scatter_tensor = orig_reduce_scatter
class MyModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.lin1 = nn.Linear(10, 10)
self.lin2 = nn.Linear(10, 10)
self.lin3 = nn.Linear(10, 10)
def forward(self, x):
return self.lin3(self.lin2(self.lin1(x)))
class ShardingStrategyMode(Enum):
ALL_HYBRID_SHARD = auto()
MIXED_HYBRID_FULL_SHARD = auto()
class TestFSDPHybridShard(FSDPTest):
@property
def world_size(self):
return max(torch.cuda.device_count(), 2)
@property
def process_group(self):
return dist.distributed_c10d._get_default_group()
@skip_if_lt_x_gpu(2)
def test_raises_manual_wrap_hybrid_shard_when_none_policy(self):
model = MyModel().cuda()
err_ctx = self.assertRaisesRegex(
ValueError,
"requires explicit specification of process group or device_mesh.",
)
with err_ctx:
model = FSDP(model, sharding_strategy=ShardingStrategy.HYBRID_SHARD)
with err_ctx:
model = FSDP(model, sharding_strategy=ShardingStrategy._HYBRID_SHARD_ZERO2)
@skip_if_lt_x_gpu(4)
def test_hsdp_save_load_state_dict(self):
model = MyModel().cuda()
num_node_devices = torch.cuda.device_count()
shard_rank_lists = list(range(0, num_node_devices // 2)), list(
range(num_node_devices // 2, num_node_devices)
)
shard_groups = (
dist.new_group(shard_rank_lists[0]),
dist.new_group(shard_rank_lists[1]),
)
my_shard_group = (
shard_groups[0] if self.rank in shard_rank_lists[0] else shard_groups[1]
)
my_replicate_group = None
my_rank = self.rank
# Create groups like (0, 4), (1, 5), (2, 6) etc and assign appropriately
shard_factor = len(shard_rank_lists[0])
for i in range(num_node_devices // 2):
replicate_group_ranks = list(range(i, num_node_devices, shard_factor))
replicate_group = dist.new_group(replicate_group_ranks)
if my_rank in replicate_group_ranks:
my_replicate_group = replicate_group
fsdp_ctor = partial(
FSDP,
sharding_strategy=ShardingStrategy.HYBRID_SHARD,
use_orig_params=True,
process_group=(my_shard_group, my_replicate_group),
)
model = fsdp_ctor(model)
optim = torch.optim.AdamW(model.parameters())
# Initialize optimizer states
model(torch.randn(2, 10)).sum().backward()
optim.step()
shard_g = model.process_group
replicate_g = model._inter_node_pg
assert shard_g == my_shard_group
assert replicate_g == my_replicate_group
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
msd = model.state_dict()
osd = FSDP.optim_state_dict(model, optim)
load_model = fsdp_ctor(MyModel().cuda())
load_optim = torch.optim.AdamW(load_model.parameters())
with FSDP.state_dict_type(load_model, StateDictType.SHARDED_STATE_DICT):
load_model.load_state_dict(msd)
FSDP.optim_state_dict_to_load(load_model, load_optim, osd)
load_optim.load_state_dict(osd)
@skip_if_lt_x_gpu(4)
def test_hsdp_sync_module_state(self):
model = MyModel().cuda()
num_node_devices = torch.cuda.device_count()
shard_rank_lists = list(range(0, num_node_devices // 2)), list(
range(num_node_devices // 2, num_node_devices)
)
shard_groups = (
dist.new_group(shard_rank_lists[0]),
dist.new_group(shard_rank_lists[1]),
)
my_shard_group = (
shard_groups[0] if self.rank in shard_rank_lists[0] else shard_groups[1]
)
my_replicate_group = None
my_rank = self.rank
# Create groups like (0, 4), (1, 5), (2, 6) etc and assign appropriately
shard_factor = len(shard_rank_lists[0])
for i in range(num_node_devices // 2):
replicate_group_ranks = list(range(i, num_node_devices, shard_factor))
replicate_group = dist.new_group(replicate_group_ranks)
if my_rank in replicate_group_ranks:
my_replicate_group = replicate_group
nn.init.constant_(model.lin1.weight, self.rank)
nn.init.constant_(model.lin2.weight, self.rank)
nn.init.constant_(model.lin3.weight, self.rank)
fsdp_ctor = partial(
FSDP,
sharding_strategy=ShardingStrategy.HYBRID_SHARD,
use_orig_params=True,
sync_module_states=True,
process_group=(my_shard_group, my_replicate_group),
)
model = fsdp_ctor(model)
with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT):
self.assertTrue((model.lin1.weight == 0).all())
self.assertTrue((model.lin2.weight == 0).all())
self.assertTrue((model.lin3.weight == 0).all())
@skip_if_lt_x_gpu(2)
def test_invalid_pg_specification_raises(self):
pol = ModuleWrapPolicy({nn.Linear})
model = MyModel().cuda()
with self.assertRaisesRegex(
ValueError, "Expected process_group to be passed in"
):
model = FSDP(
model,
auto_wrap_policy=pol,
process_group=self.process_group,
sharding_strategy=ShardingStrategy.HYBRID_SHARD,
)
# TODO - add test for ZeRO-2 style sharding ensure params are not
# resharded after forward.
@skip_if_lt_x_gpu(2)
def test_fsdp_hybrid_shard_basic_setup(self):
"""
Tests basic functionality of HYBRID_SHARD and _HYBRID_SHARD_ZERO2:
1. Inter and intra-node process groups are correctly setup
2. Process groups are the same across FSDP wrapped instances
3. reduce_scatter and allreduce called the expected no. of times
"""
self.run_subtests(
{
"hsdp_sharding_strategy": [
ShardingStrategy.HYBRID_SHARD,
ShardingStrategy._HYBRID_SHARD_ZERO2,
],
"sharding_strategy_mode": [
ShardingStrategyMode.ALL_HYBRID_SHARD,
ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD,
],
"use_orig_params": [False, True],
"use_device_mesh": [False, True],
},
self._test_fsdp_hybrid_shard_basic_setup,
)
def _test_fsdp_hybrid_shard_basic_setup(
self,
hsdp_sharding_strategy: ShardingStrategy,
sharding_strategy_mode: ShardingStrategyMode,
use_orig_params: bool,
use_device_mesh: bool,
):
if use_device_mesh:
device_mesh = init_device_mesh("cuda", (1, self.world_size))
else:
device_mesh = None
hsdp_model = self._init_hsdp_model(
hsdp_sharding_strategy,
sharding_strategy_mode,
use_orig_params,
hsdp_device_mesh=device_mesh,
)
# All FSDP modules should have state.process_group as the process group over which to
# shard (default process group), and state._inter_node_pg (process group containing only
# this rank)
intra_node_pgs = set()
inter_node_pgs = set()
for fsdp_module in hsdp_model.fsdp_modules(hsdp_model):
# TODO: This needs to be replaced if we deprecate
# `FSDP.sharding_strategy` to only use the handle one.
# https://github.com/pytorch/pytorch/issues/90857
if fsdp_module.sharding_strategy not in HYBRID_SHARDING_STRATEGIES:
self.assertEqual(
sharding_strategy_mode, ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD
)
self.assertEqual(
fsdp_module.sharding_strategy, ShardingStrategy.FULL_SHARD
)
continue
# process_group should be across the node, which is just the
# whole world here.
self.assertEqual(
dist.get_world_size(fsdp_module.process_group),
dist.get_world_size(self.process_group),
)
intra_node_pgs.add(fsdp_module.process_group)
inter_node_pg = fsdp_module._inter_node_pg
inter_node_pgs.add(inter_node_pg)
self.assertEqual(1, dist.get_world_size(inter_node_pg))
self.assertFalse(_rank_not_in_group(inter_node_pg))
self.assertEqual(hsdp_sharding_strategy, fsdp_module.sharding_strategy)
# All fsdp modules should share the same process groups
self.assertEqual(1, len(intra_node_pgs))
self.assertEqual(1, len(inter_node_pgs))
orig_ar = dist.all_reduce
orig_rs = dist.reduce_scatter_tensor
def patched_collective(orig_collective, counter, *args, **kwargs):
counter[orig_collective] += 1
return orig_collective(*args, **kwargs)
cntr = Counter()
patched_allreduce = partial(patched_collective, orig_ar, cntr)
patched_reduce_scatter = partial(patched_collective, orig_rs, cntr)
with patch_allreduce(patched_allreduce), patch_reduce_scatter(
patched_reduce_scatter
):
inp = hsdp_model.get_input(device=torch.cuda.current_device())
out = hsdp_model(inp[0], inp[1])
loss = hsdp_model.get_loss(inp, out)
loss.backward()
if sharding_strategy_mode == ShardingStrategyMode.ALL_HYBRID_SHARD:
num_flat_params = len(list(traversal_utils._get_fsdp_handles(hsdp_model)))
self.assertEqual(num_flat_params, cntr[orig_ar])
self.assertEqual(num_flat_params, cntr[orig_rs])
elif sharding_strategy_mode == ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD:
num_hsdp_flat_params = len(
list(traversal_utils._get_fsdp_handles(hsdp_model.transformer))
)
num_flat_params = len(list(traversal_utils._get_fsdp_handles(hsdp_model)))
self.assertEqual(num_hsdp_flat_params, cntr[orig_ar])
self.assertEqual(num_flat_params, cntr[orig_rs])
@skip_if_lt_x_gpu(4)
def test_fsdp_hybrid_shard_parity(self):
self.run_subtests(
{
"hsdp_sharding_strategy": [
ShardingStrategy.HYBRID_SHARD,
ShardingStrategy._HYBRID_SHARD_ZERO2,
],
"use_orig_params": [False, True],
},
self._test_fsdp_hybrid_shard_parity,
)
def _test_fsdp_hybrid_shard_parity(
self, hsdp_sharding_strategy: ShardingStrategy, use_orig_params: bool
):
fsdp_model = self._init_fsdp_model(use_orig_params)
global_pg = dist.distributed_c10d._get_default_group()
hsdp_pgs = _init_intra_and_inter_node_groups(global_pg, 2)
hsdp_model = self._init_hsdp_model(
hsdp_sharding_strategy,
ShardingStrategyMode.ALL_HYBRID_SHARD,
use_orig_params,
hsdp_process_groups=hsdp_pgs,
)
assert (
hsdp_model._inter_node_pg.size() > 1
), "HSDP model initialized without replication"
fsdp_optim = torch.optim.Adam(fsdp_model.parameters(), lr=1e-2)
hsdp_optim = torch.optim.Adam(hsdp_model.parameters(), lr=1e-2)
torch.manual_seed(global_pg.rank() + 1)
for _ in range(5):
inp = fsdp_model.module.get_input(torch.device("cuda"))
losses: List[torch.Tensor] = []
for model, optim in ((fsdp_model, fsdp_optim), (hsdp_model, hsdp_optim)):
optim.zero_grad()
loss = model(*inp).sum()
losses.append(loss)
loss.backward()
optim.step()
self.assertEqual(losses[0], losses[1])
def _init_fsdp_model(self, use_orig_params: bool) -> nn.Module:
auto_wrap_policy = ModuleWrapPolicy(
{TransformerEncoderLayer, TransformerDecoderLayer},
)
hsdp_kwargs = {
"auto_wrap_policy": auto_wrap_policy,
"device_id": torch.cuda.current_device(),
"use_orig_params": use_orig_params,
}
fsdp_model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.RECURSIVE,
DEVICEInitMode.DEVICE_BEFORE,
hsdp_kwargs,
deterministic=True,
)
return fsdp_model
def _init_hsdp_model(
self,
hsdp_sharding_strategy: ShardingStrategy,
sharding_strategy_mode: str,
use_orig_params: bool,
hsdp_process_groups: Optional[
Tuple[dist.ProcessGroup, dist.ProcessGroup]
] = None,
hsdp_device_mesh: Optional = None,
):
assert hsdp_process_groups is None or hsdp_device_mesh is None
auto_wrap_policy = ModuleWrapPolicy(
{TransformerEncoderLayer, TransformerDecoderLayer},
)
hsdp_kwargs = {
"device_id": torch.cuda.current_device(),
"auto_wrap_policy": auto_wrap_policy,
"sharding_strategy": hsdp_sharding_strategy,
"use_orig_params": use_orig_params,
"device_mesh": hsdp_device_mesh,
}
if sharding_strategy_mode == ShardingStrategyMode.ALL_HYBRID_SHARD:
hsdp_model = TransformerWithSharedParams.init(
hsdp_process_groups or self.process_group,
FSDPInitMode.RECURSIVE,
DEVICEInitMode.DEVICE_BEFORE,
hsdp_kwargs,
deterministic=True,
)
elif sharding_strategy_mode == ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD:
model = TransformerWithSharedParams.init(
hsdp_process_groups or self.process_group,
FSDPInitMode.NO_FSDP,
DEVICEInitMode.DEVICE_BEFORE,
{},
deterministic=True,
)
# Use the HSDP strategy for the transformer module
model.transformer = FSDP(model.transformer, **hsdp_kwargs)
# Use `FULL_SHARD` for the embedding and output projection
hsdp_model = FSDP(
model,
device_id=torch.cuda.current_device(),
sharding_strategy=ShardingStrategy.FULL_SHARD,
use_orig_params=use_orig_params,
)
return hsdp_model
instantiate_parametrized_tests(TestFSDPHybridShard)
if __name__ == "__main__":
run_tests()
|