File: test_fsdp_mixed_precision.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1326 lines) | stat: -rw-r--r-- 51,911 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
# Owner(s): ["oncall: distributed"]

import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List

import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
    BackwardPrefetch,
    CPUOffload,
    FullyShardedDataParallel as FSDP,
    MixedPrecision,
    ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
    SaveForwardInputsModel,
    skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
    DEVICEInitMode,
    FSDPInitMode,
    FSDPTest,
    subtest_name,
    TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
    skip_but_pass_in_sandcastle_if,
    TEST_WITH_DEV_DBG_ASAN,
)


try:
    import torchvision

    HAS_TORCHVISION = True
except ImportError:
    HAS_TORCHVISION = False

skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
    not HAS_TORCHVISION, "no torchvision"
)


if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)

if TEST_WITH_DEV_DBG_ASAN:
    print(
        "Skip dev-asan as torch + multiprocessing spawn have known issues",
        file=sys.stderr,
    )
    sys.exit(0)

# Various mixed precision configs to test under.
default_mp = MixedPrecision(
    param_dtype=torch.float16,
    buffer_dtype=torch.float16,
    reduce_dtype=torch.float16,
)

# Params and buffers are not cast, comm only happens
# in reduced precision.
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)

# Only parameters are cast (thus comm should happen in the param_dtype precision)
mp_only_param_and_buf = MixedPrecision(
    param_dtype=torch.float16, buffer_dtype=torch.float16
)

# Nothing is cast (thus param, comm, grad, and buffer should be in the full precision)
mp_no_mixed_precision = MixedPrecision()

nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)

mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
if nccl_supports_bf16:
    mp_diff_buffer_and_reduce = MixedPrecision(
        param_dtype=torch.float16,
        buffer_dtype=torch.bfloat16,
        reduce_dtype=torch.float32,
    )
    mp_configs.extend([mp_diff_buffer_and_reduce])

# Buffer original dtype, which can differ from model params.
_BUFFER_ORIG_DTYPE = torch.float64

params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]

configs = list(
    product(
        mp_configs,
        cpu_offload_config,
        full_precision_param_dtype_config,
        enable_sharded_grad_scaler,
    )
)

test_name_mapping = {
    str(CPUOffload(offload_params=True)): "offload_true",
    str(CPUOffload(offload_params=False)): "offload_false",
    str(default_mp): "mp_fp16",
    str(mp_only_reduce): "mp_only_reduce",
    str(mp_only_param_and_buf): "mp_only_param_and_buf",
    str(mp_no_mixed_precision): "mp_no_mp",
    str(torch.float32): "fp32",
    str(torch.float64): "fp64",
    "enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}

if nccl_supports_bf16:
    test_name_mapping.update(
        {
            str(mp_diff_buffer_and_reduce): "mp_diff_buffer_reduce",
        }
    )

subtest_name = partial(subtest_name, test_name_mapping)

_CURRENT_FULL_PRECISION_PARAM_DTYPE = None


@contextlib.contextmanager
def patch_reduce_scatter(new_reduce_scatter, full_precision_param_dtype):
    """
    Patches ``dist.reduce_scatter_tensor`` with ``new_reduce_scatter`` and
    restores upon exiting. Used for validation of mixed precision.
    """
    orig_reduce_scatter = dist.reduce_scatter_tensor
    dist.reduce_scatter_tensor = new_reduce_scatter
    global _CURRENT_FULL_PRECISION_PARAM_DTYPE
    _CURRENT_FULL_PRECISION_PARAM_DTYPE = full_precision_param_dtype
    try:
        yield
    finally:
        dist.reduce_scatter_tensor = orig_reduce_scatter
        _CURRENT_FULL_PRECISION_PARAM_DTYPE = None


class LinearMixedPrecision(nn.Module):
    """
    A linear module with extra checks for mixed precision training.
    """

    def __init__(self, param_dtype, buffer_name="buffer", run_checks=True):
        super().__init__()
        self.lin = nn.Linear(10, 10, bias=False).to(param_dtype)
        # Use a configurable buffer name to avoid all submodules sharing the
        # same buffer name, which may hide prefixed vs. unprefixed name bugs
        self.buffer_name = buffer_name
        self.register_buffer(buffer_name, torch.randn((1, 2), dtype=_BUFFER_ORIG_DTYPE))
        self._orig_param_type = param_dtype
        self._orig_buffer_dtype = _BUFFER_ORIG_DTYPE
        self.run_checks = run_checks

    def forward(self, tup):
        inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
        if self.run_checks:
            # Param and input should be the mixed precision type
            expected_param_type = (
                mp_config.param_dtype
                if mp_config.param_dtype is not None
                else self._orig_param_type
            )
            expected_buffer_type = (
                mp_config.buffer_dtype
                if mp_config.buffer_dtype is not None
                else self._orig_buffer_dtype
            )
            cls.assertEqual(inp.dtype, expected_param_type)
            # Buffer should be in specified precision as well.
            cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)

            # In FSDP, self.params should point to the right type.
            num_active_fsdp = 0
            for fsdp_module in FSDP.fsdp_modules(fsdp):
                fsdp_managed_params = fsdp_module.params
                # Single param assumption
                cls.assertEqual(1, len(fsdp_managed_params))
                for param in fsdp_managed_params:
                    # FSDP unit is currently active if it is not using the param
                    # local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
                    # cases. In FULL_SHARD, we have the additional property that
                    # param._full_param_padded has not been freed.
                    param_is_sharded = (
                        fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
                        and fsdp_module.world_size > 1
                    )
                    is_fsdp_unit_active = (
                        param_is_sharded
                        and param.data.data_ptr() != param._local_shard.data_ptr()
                    )
                    if is_fsdp_unit_active:
                        num_active_fsdp += 1
                        # This FSDP unit is active, verify param points to mixed
                        cls.assertEqual(param.dtype, expected_param_type)
                        # _unshard should have also freed the fp16 shard.
                        # Shard is never allocated if param_dtype mixed precision is not
                        # enabled.
                        if mp_config.param_dtype is not None:
                            cls.assertEqual(0, param._mp_shard.untyped_storage().size())
                        else:
                            cls.assertFalse(hasattr(param, "_mp_shard"))
                    elif param_is_sharded:
                        # This FSDP unit is not active as full param has been
                        # freed or not yet allocated. Ensure param points to full
                        # precision param.
                        cls.assertEqual(param.dtype, full_precision_param_dtype)
            # We should have gotten at least one active FSDP unit for sharded
            # (world size > 1) cases. For cases where param is not sharded
            # (ie world_size == 1) it is a bit hard to check if FSDP unit is active
            # as we'd always point to the local shard, so we rely on the forward
            # pass self.lin(inp) working well and inp being reduced precision to
            # implicitly validate that the param is indeed in the reduced precision.
            if cls.world_size > 1:
                cls.assertGreater(num_active_fsdp, 0)

        return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)


class TestFSDPMixedPrecision(FSDPTest):
    @property
    def world_size(self):
        raise ValueError("To be implemented by child classes")

    def _get_simple_nested_model(
        self, param_dtype, run_checks, *fsdp_args, **fsdp_kwargs
    ):
        model = FSDP(
            nn.Sequential(
                FSDP(
                    LinearMixedPrecision(
                        param_dtype, buffer_name="buffer0", run_checks=run_checks
                    ).cuda(),
                    *fsdp_args,
                    **fsdp_kwargs,
                ),
                LinearMixedPrecision(
                    param_dtype, buffer_name="buffer1", run_checks=run_checks
                ).cuda(),
            ),
            *fsdp_args,
            **fsdp_kwargs,
        )
        return model

    def _get_simple_model(self, param_dtype, *fsdp_args, **fsdp_kwargs):
        model = FSDP(
            LinearMixedPrecision(param_dtype).cuda(), *fsdp_args, **fsdp_kwargs
        )
        return model

    def _validate_no_mp_shard(self, fsdp_model):
        """
        Validates that there is no mixed precision _mp_shard allocated
        when it is not expected to be.
        """
        fsdp_units = FSDP.fsdp_modules(fsdp_model)
        for fsdp in fsdp_units:
            for param in fsdp.params:
                self.assertFalse(hasattr(param, "_mp_shard"))

    def _validate_mp_shard_freed(self, fsdp_model):
        """
        Ensures that the mixed precision shard is greed for all FSDP units.
        """
        fsdp_units = FSDP.fsdp_modules(fsdp_model)
        for fsdp in fsdp_units:
            for param in fsdp.params:
                self.assertEqual(0, param._mp_shard.untyped_storage().size())

    def _reduce_scatter_validate_mp(
        self, orig_reduce_scatter, mp_config, should_run_low_prec, *args, **kwargs
    ):
        """
        Runs reduce-scatter but verifies mixed precision settings before. This
        is to test mixed precision is working as expected during backward pass.
        In particular it ensures that the gradients were cast to the right type
        and comm. is going to happen in the right type.
        """
        tensors = []
        for x in args:
            if isinstance(x, torch.Tensor):
                tensors.append(x)
        for x in kwargs.values():
            if isinstance(x, torch.Tensor):
                tensors.append(x)

        # reduce_dtype has higher priority than param_dtype, because mixed_precision
        # supports overriding param_dtype with reduce_dtype to control the
        # reduction precision. In the case where reduce_dtype == param_dtype
        # this tests that gradients are in the expected precision as well.
        # If reduce_dtype is not specified (is None) we comm. in the param_dtype
        # if that is specified, otherwise full precision dtype.
        if should_run_low_prec:
            expected_dtype = (
                mp_config.reduce_dtype
                if mp_config.reduce_dtype is not None
                else (
                    mp_config.param_dtype
                    if mp_config.param_dtype is not None
                    else _CURRENT_FULL_PRECISION_PARAM_DTYPE
                )
            )
        else:
            expected_dtype = _CURRENT_FULL_PRECISION_PARAM_DTYPE

        for t in tensors:
            self.assertEqual(
                expected_dtype,
                t.dtype,
                f"Expected to reduce in {expected_dtype} but got tensors in {t.dtype}",
            )

        return orig_reduce_scatter(*args, **kwargs)

    def _test_grads_reduced_precision(
        self, offload_params: bool, use_orig_params: bool
    ):
        class MyModel(nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.lin1 = nn.Linear(10, 10)
                self.lin2 = nn.Linear(10, 10)

            def forward(self, x):
                return self.lin2(self.lin1(x))

        m = MyModel().cuda()
        mp = MixedPrecision(
            param_dtype=torch.float16,
            reduce_dtype=torch.float16,
            buffer_dtype=torch.float16,
            keep_low_precision_grads=True,
        )
        fsdp_kwargs = {
            "mixed_precision": mp,
            "cpu_offload": CPUOffload(offload_params=offload_params),
            "use_orig_params": use_orig_params,
        }
        m.lin1 = FSDP(m.lin1, **fsdp_kwargs)
        m = FSDP(m, **fsdp_kwargs)
        for _ in range(6):
            inp = torch.ones(1, 10)
            m(inp).sum().backward()
            for param in m.parameters():
                if param.grad is not None:
                    self.assertEqual(torch.float16, param.grad.dtype)

        dist.barrier()

    def _run_test_mixed_precision_e2e(
        self,
        mp_config,
        cpu_offload,
        backward_prefetch,
        forward_prefetch,
        full_precision_param_dtype,
        sharding_strategy,
        enable_sharded_grad_scaler,
    ):
        torch.cuda.set_device(self.rank)
        fsdp_models = [
            self._get_simple_model(
                param_dtype=full_precision_param_dtype,
                sharding_strategy=sharding_strategy,
                cpu_offload=cpu_offload,
                mixed_precision=mp_config,
                backward_prefetch=backward_prefetch,
                forward_prefetch=forward_prefetch,
            ),
            self._get_simple_nested_model(
                param_dtype=full_precision_param_dtype,
                run_checks=True,
                sharding_strategy=sharding_strategy,
                cpu_offload=cpu_offload,
                mixed_precision=mp_config,
                backward_prefetch=backward_prefetch,
                forward_prefetch=forward_prefetch,
            ),
        ]
        for model in fsdp_models:
            if not cpu_offload.offload_params:
                model.cuda()

            # Patch reduce_scatter to add validation for mixed precision types.
            orig_reduce_scatter = dist.reduce_scatter_tensor
            test_reduce_scatter = partial(
                self._reduce_scatter_validate_mp,
                orig_reduce_scatter,
                mp_config,
                True,
            )
            with patch_reduce_scatter(test_reduce_scatter, full_precision_param_dtype):
                scaler = ShardedGradScaler(enabled=enable_sharded_grad_scaler)
                optim = torch.optim.Adam(model.parameters())

                for _ in range(3):
                    inp = torch.randn(
                        3, 10, device="cuda", dtype=full_precision_param_dtype
                    )
                    # Forward pass of LinearMixedPrecision check casting of
                    # inputs, params, buffers.
                    act, *_ = model(
                        (inp, self, model, mp_config, full_precision_param_dtype)
                    )
                    # Buffers should be casted.
                    for buf in model.buffers():
                        if mp_config.buffer_dtype is not None:
                            self.assertEqual(buf.dtype, mp_config.buffer_dtype)
                        else:
                            self.assertEqual(buf.dtype, _BUFFER_ORIG_DTYPE)
                    # p._mp_shard should be freed.
                    if mp_config.param_dtype is not None:
                        self._validate_mp_shard_freed(model)
                    else:
                        # We never should have allocated an _mp_shard.
                        self._validate_no_mp_shard(model)

                    loss = act.sum()
                    loss = scaler.scale(loss)
                    if mp_config.param_dtype is not None:
                        self.assertEqual(loss.dtype, mp_config.param_dtype)
                    else:
                        self.assertEqual(loss.dtype, full_precision_param_dtype)
                    # Will run patched reduce scatter that validates mixed_precision
                    # types in backward.
                    loss.backward()
                    # Buffers stay casted even after backwards.
                    for buf in model.buffers():
                        if mp_config.buffer_dtype is not None:
                            self.assertEqual(buf.dtype, mp_config.buffer_dtype)
                        else:
                            self.assertEqual(buf.dtype, _BUFFER_ORIG_DTYPE)
                    # p._mp_shard should be freed.
                    if mp_config.param_dtype is not None:
                        self._validate_mp_shard_freed(model)
                    else:
                        self._validate_no_mp_shard(model)

                    # Ensure params and grads are in full precision,
                    # as after fwd/backward we maintain full precision shards.
                    for param in model.parameters():
                        self.assertEqual(param.dtype, full_precision_param_dtype)
                        if param.grad is not None:
                            self.assertEqual(
                                param.grad.dtype, full_precision_param_dtype
                            )

                    # Unscale the gradients and step
                    scaler.step(optim)
                    # Update the scale factor
                    scaler.update()

                    # Summon full params should be in full precision
                    with model.summon_full_params(model):
                        # It is not expected for summon_full_params to allocate
                        # a mixed precision shard.
                        if mp_config.param_dtype is not None:
                            self._validate_mp_shard_freed(model)
                        else:
                            self._validate_no_mp_shard(model)
                        params = list(model.parameters())
                        for p in params:
                            self.assertEqual(p.dtype, full_precision_param_dtype)

                        # Note that buffers are cast only once and only restored
                        # to the original buffer dtype in state_dict, so
                        # summon_full_params is not expected to restore buffer
                        # types to their original.
                        named_buffers = dict(model.named_buffers())
                        for v in named_buffers.values():
                            if mp_config.buffer_dtype is not None:
                                self.assertEqual(v.dtype, mp_config.buffer_dtype)
                            else:
                                self.assertEqual(v.dtype, _BUFFER_ORIG_DTYPE)

                    # state_dict should be in full precision
                    state_dict = {k: v.clone() for k, v in model.state_dict().items()}
                    for name, tensor in state_dict.items():
                        # Parameters and buffers are checkpointed in their
                        # original dtypes, which may be different.
                        if name in named_buffers.keys():
                            self.assertEqual(tensor.dtype, _BUFFER_ORIG_DTYPE)
                        else:
                            self.assertEqual(
                                tensor.dtype,
                                full_precision_param_dtype,
                                f"{name}: {tensor.dtype} vs {full_precision_param_dtype}",
                            )

                    # After state_dict, buffer's dtype should have been restored
                    # to the mixed precision one.
                    for buf in model.buffers():
                        if mp_config.buffer_dtype is not None:
                            self.assertEqual(buf.dtype, mp_config.buffer_dtype)
                        else:
                            self.assertEqual(buf.dtype, _BUFFER_ORIG_DTYPE)


class TestFSDPMixedPrecisionSharded(TestFSDPMixedPrecision):
    @property
    def world_size(self):
        return 2

    def _get_subtest_config(self) -> Dict[str, List[Any]]:
        """Returns a subtest configuration that subtests prefetching settings
        together."""
        return {
            "forward_prefetch": [False, True],
            "backward_prefetch": [
                None,
                BackwardPrefetch.BACKWARD_PRE,
                BackwardPrefetch.BACKWARD_POST,
            ],
        }

    @skip_if_lt_x_gpu(2)
    def test_mixed_precision_no_reshard_after_forward(self):
        # Note that we don't exercise all possible different configs so as to
        # not increase test TTS too much.
        mp = default_mp if not nccl_supports_bf16 else mp_diff_buffer_and_reduce
        self._run_test_mixed_precision_e2e(
            mp_config=mp,
            cpu_offload=CPUOffload(offload_params=True),
            backward_prefetch=None,
            forward_prefetch=False,
            full_precision_param_dtype=torch.float64,
            sharding_strategy=ShardingStrategy.SHARD_GRAD_OP,
            enable_sharded_grad_scaler=False,
        )

    @skip_if_lt_x_gpu(2)
    @parametrize(params, configs, subtest_name)
    def test_mixed_precision_e2e_full_shard(
        self,
        mp_config,
        cpu_offload,
        full_precision_param_dtype,
        enable_sharded_grad_scaler,
    ):
        self.run_subtests(
            self._get_subtest_config(),
            self._run_test_mixed_precision_e2e,
            mp_config=mp_config,
            cpu_offload=cpu_offload,
            full_precision_param_dtype=full_precision_param_dtype,
            sharding_strategy=ShardingStrategy.FULL_SHARD,
            enable_sharded_grad_scaler=enable_sharded_grad_scaler,
        )

    def _test_mixed_precision_embedding_table(self, mp_config):
        # Basic test to ensure int inputs are not casted which would break
        # modules such as embedding tables.
        param_dtype = mp_config.param_dtype or torch.float32
        orig_reduce_scatter = dist.reduce_scatter_tensor
        test_reduce_scatter = partial(
            self._reduce_scatter_validate_mp,
            orig_reduce_scatter,
            mp_config,
            True,
        )
        with patch_reduce_scatter(test_reduce_scatter, param_dtype):
            # TODO: `test_mp_embedding_reduce()` fails if we do not wrap the
            # entire `TransformerWithSharedParams` with a single top-level FSDP
            model = TransformerWithSharedParams.init(
                self.process_group,
                FSDPInitMode.NO_FSDP,
                DEVICEInitMode.DEVICE_BEFORE,
                {"mixed_precision": mp_config},
            )
            fsdp_model = FSDP(model, mixed_precision=mp_config)
            optim = torch.optim.SGD(fsdp_model.parameters(), lr=0.1)
            for _ in range(6):
                inp = fsdp_model.module.get_input(torch.device("cuda"))
                # This would fail if we casted integer module inputs such as for
                # embedding tables.
                output = fsdp_model(*inp)
                loss = fsdp_model.module.get_loss(inp, output).cuda()
                self.assertEqual(loss.dtype, param_dtype)
                fsdp_model.module.run_backward(loss)
                optim.step()

    @skip_if_lt_x_gpu(2)
    def test_mp_embedding_reduce(self):
        self._test_mixed_precision_embedding_table(
            mp_config=MixedPrecision(reduce_dtype=torch.float16)
        )

    @skip_if_lt_x_gpu(2)
    def test_mp_embedding_only_params_and_bufs(self):
        self._test_mixed_precision_embedding_table(
            mp_config=MixedPrecision(
                param_dtype=torch.float16,
                buffer_dtype=torch.float16,
            )
        )

    @skip_if_lt_x_gpu(2)
    def test_mp_embedding_default(self):
        default_mp_config = MixedPrecision(
            param_dtype=torch.float16,
            buffer_dtype=torch.float16,
            reduce_dtype=torch.float16,
        )
        self._test_mixed_precision_embedding_table(mp_config=default_mp_config)

    @skip_if_lt_x_gpu(2)
    def test_mp_embedding_params_and_reduce_diff(self):
        params_and_reduce_different = MixedPrecision(
            param_dtype=torch.float16,
            reduce_dtype=torch.float32,
            buffer_dtype=torch.float16,
        )
        self._test_mixed_precision_embedding_table(
            mp_config=params_and_reduce_different
        )

    @skip_if_lt_x_gpu(2)
    @skipIfNoTorchVision
    def test_mixed_precision_resnet(self):
        """
        End to end test to ensure mixed precision + auto_wrap works
        for ResNet model.
        """
        resnet_model = torchvision.models.resnet50().cuda()
        resnet_model = nn.SyncBatchNorm.convert_sync_batchnorm(
            resnet_model, process_group=dist.distributed_c10d._get_default_group()
        )
        n_bn = sum(
            1 if isinstance(x, _BatchNorm) else 0 for x in resnet_model.modules()
        )
        inp = torch.ones(1, 3, 1000, 1000, device="cuda")
        mp_config = MixedPrecision(
            param_dtype=torch.float16,
            reduce_dtype=torch.float16,
            buffer_dtype=torch.float16,
        )
        fsdp = FSDP(
            resnet_model,
            auto_wrap_policy=size_based_auto_wrap_policy,
            mixed_precision=mp_config,
        )
        # Batchnorm units should be wrapped individually. Validate this by
        # ensuring there are equal no. of FSDP units that are BN as BN units
        # in original resnet model.
        fsdp_bn = 0
        for module in fsdp.fsdp_modules(fsdp):
            wrapped_module = module.module
            if isinstance(wrapped_module, _BatchNorm):
                fsdp_bn += 1

        self.assertEqual(fsdp_bn, n_bn)
        # Would throw type mismatch issue without mixed precision autowrapping.
        loss = fsdp(inp).sum()
        loss.backward()

    @skip_if_lt_x_gpu(2)
    def test_grads_reduced_precision(self):
        self.run_subtests(
            {
                "offload_params": [False, True],
                "use_orig_params": [False, True],
            },
            self._test_grads_reduced_precision,
        )

    @skip_if_lt_x_gpu(2)
    @parametrize("convert_sync_bn", [True, False])
    def test_mp_batchnorm(self, convert_sync_bn):
        class BatchNormNet(nn.Module):
            def __init__(self, affine=True):
                super().__init__()
                self.fc1 = nn.Linear(2, 40, bias=False)
                self.bn = nn.BatchNorm1d(4, affine=affine)
                self.fc2 = nn.Linear(40, 4, bias=False)
                self.ln = nn.LayerNorm(4)
                self.fc3 = nn.Linear(4, 4, bias=False)

            def forward(self, x):
                x = torch.reshape(self.fc1(x), (-1, 4, 10))
                x = self.bn(x)
                x = torch.reshape(x, (-1, 40))
                x = self.fc2(x)
                x = self.ln(x)
                x = self.fc3(x)
                return F.softmax(x, dim=1)

        def never_wrap_policy(*args, **kwargs):
            return False

        net = BatchNormNet().cuda()
        if convert_sync_bn:
            net = nn.SyncBatchNorm.convert_sync_batchnorm(net)
        # FSDP detects that mixed precision + batchnorm will cause issues
        # and thus wrap batchnorm in a distinct FSDP unit that does not
        # use mixed precision.
        mp_config = MixedPrecision(
            param_dtype=torch.float16,
            reduce_dtype=torch.float16,
            buffer_dtype=torch.float16,
            _module_classes_to_ignore=[_BatchNorm, nn.LayerNorm],
        )
        with self.assertWarnsRegex(
            expected_warning=UserWarning,
            expected_regex="These modules will be wrapped as separate FSDP",
        ):
            model = FSDP(
                net,
                mixed_precision=mp_config,
                auto_wrap_policy=never_wrap_policy,
            )

        no_mp = MixedPrecision()
        for mod in [model.ln, model.bn]:
            self.assertTrue(isinstance(mod, FSDP))
            self.assertEqual(no_mp, mod.mixed_precision)
        # policy should not have wrapped any other submodules
        for mod in [model.fc1, model.fc2, model.fc3]:
            self.assertFalse(isinstance(mod, FSDP))

        # Overall mixed precision is still enabled
        self.assertEqual(mp_config, model.mixed_precision)

        inp = torch.randn((1, 2), device="cuda")
        # Without FSDP BN mixed precision fix, this would result in
        # RuntimeError: Expected counts to have type Half but got Float
        # for syncBN
        model(inp).sum().backward()

    @skip_if_lt_x_gpu(2)
    def test_eval_root_cast_inputs(self):
        """
        In a case where root module does not manage FSDP parameters,
        ensure that we don't cast forward inputs which could potentially
        cause a dtype mismatch. Check that FSDP_USE_FULL_PREC_IN_EVAL controls
        this.
        """

        low_prec_dtype = torch.float16

        class MyModel(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.a = nn.Linear(5, 5)

            def forward(self, x, expect_use_full_prec_in_eval):
                if expect_use_full_prec_in_eval:
                    assert x.dtype == torch.float32, f"Expected fp32, got {x.dtype}"
                else:
                    assert (
                        x.dtype == low_prec_dtype
                    ), f"Expected {low_prec_dtype}, got {x.dtype}"
                return self.a(x)

        mp_config = MixedPrecision(
            param_dtype=low_prec_dtype,
            reduce_dtype=low_prec_dtype,
            buffer_dtype=low_prec_dtype,
        )

        for use_full_prec_in_eval in [True, False]:
            os.environ["FSDP_USE_FULL_PREC_IN_EVAL"] = (
                "1" if use_full_prec_in_eval else "0"
            )
            m = MyModel().cuda()
            m.a = FSDP(m.a, mixed_precision=mp_config)
            model = FSDP(m, mixed_precision=mp_config)
            model.eval()
            inp = torch.randn(5, 5)
            model(inp, use_full_prec_in_eval).sum().backward()

    @skip_if_lt_x_gpu(2)
    def test_full_precision_in_eval(self):
        """
        Tests that eval runs in full precision if FSDP_USE_FULL_PREC_IN_EVAL is set.
        """
        for (
            cast_forward_inputs,
            use_full_prec_in_eval,
        ) in itertools.product([True, False], [True, False]):
            mp_config = MixedPrecision(
                param_dtype=torch.float16,
                reduce_dtype=torch.float16,
                buffer_dtype=torch.float16,
                cast_forward_inputs=cast_forward_inputs,
            )
            os.environ["FSDP_USE_FULL_PREC_IN_EVAL"] = (
                "1" if use_full_prec_in_eval else "0"
            )
            model = TransformerWithSharedParams.init(
                self.process_group,
                FSDPInitMode.RECURSIVE,
                DEVICEInitMode.DEVICE_BEFORE,
                {"mixed_precision": mp_config},
            )
            inp = model.get_input(torch.device("cuda"))
            output = model(*inp)
            loss = model.get_loss(inp, output).cuda()
            # Loss should be in fp16
            self.assertEqual(torch.float16, loss.dtype)
            model.run_backward(loss)
            # Grads should be in fp32 as we upcast them
            for p in model.parameters():
                if p.grad is not None:
                    self.assertEqual(torch.float32, p.grad.dtype)

            # Now in eval mode, loss should be fp32 if use_full_prec_in_eval is set.
            model.eval()
            inp = model.get_input(torch.device("cuda"))
            output = model(*inp)
            loss = model.get_loss(inp, output).cuda()
            expected_dtype = torch.float32 if use_full_prec_in_eval else torch.float16
            self.assertEqual(expected_dtype, loss.dtype)

    @skip_if_lt_x_gpu(2)
    def test_full_precision_in_eval_buffers(self):
        """
        Tests that when model.eval() and FSDP_USE_FULL_PREC_IN_EVAL is set,
        buffers are in the full precision.
        """
        for (
            cast_forward_inputs,
            use_full_prec_in_eval,
        ) in itertools.product([True, False], [True, False]):
            os.environ["FSDP_USE_FULL_PREC_IN_EVAL"] = (
                "1" if use_full_prec_in_eval else "0"
            )
            mp_config = MixedPrecision(
                param_dtype=torch.float16,
                reduce_dtype=torch.float16,
                buffer_dtype=torch.float16,
                cast_forward_inputs=cast_forward_inputs,
            )
            model_getter = self._get_simple_nested_model
            fsdp_model = model_getter(
                param_dtype=torch.float32,
                run_checks=False,
                mixed_precision=mp_config,
            )

            inp = torch.randn(3, 10, device="cuda")
            fsdp_model((inp, self, fsdp_model, mp_config, torch.float32))
            for buf in fsdp_model.buffers():
                self.assertEqual(torch.float16, buf.dtype)

            # model.eval() + forward pass should make the buffers in full prec again
            # Add pre-forward hooks
            def verify_eval_buffer_dtype(module, input):
                expected_dtype = (
                    _BUFFER_ORIG_DTYPE if use_full_prec_in_eval else torch.float16
                )
                for buf in module.buffers():
                    self.assertEqual(expected_dtype, buf.dtype)

            def _get_underlying_module(m):
                return m.module if isinstance(m, FSDP) else m

            hook_handles = []
            hook_handles.append(
                _get_underlying_module(fsdp_model[0]).register_forward_pre_hook(
                    verify_eval_buffer_dtype
                )
            )
            hook_handles.append(
                _get_underlying_module(fsdp_model[1]).register_forward_pre_hook(
                    verify_eval_buffer_dtype
                )
            )

            fsdp_model.eval()
            fsdp_model((inp, self, fsdp_model, mp_config, torch.float32))
            for hook_handle in hook_handles:
                hook_handle.remove()

            expected_dtype = (
                _BUFFER_ORIG_DTYPE if use_full_prec_in_eval else torch.float16
            )
            for buf in fsdp_model.buffers():
                self.assertEqual(expected_dtype, buf.dtype)

            # model.train() + forward again should make buffers in fp16
            fsdp_model.train()
            fsdp_model((inp, self, fsdp_model, mp_config, torch.float32))
            for buf in fsdp_model.buffers():
                self.assertEqual(torch.float16, buf.dtype)

    @skip_if_lt_x_gpu(2)
    def test_full_precision_in_eval_comm(self):
        for (
            cast_forward_inputs,
            use_full_prec_in_eval,
        ) in itertools.product([True, False], [True, False]):
            os.environ["FSDP_USE_FULL_PREC_IN_EVAL"] = (
                "1" if use_full_prec_in_eval else "0"
            )
            mp_config = MixedPrecision(
                param_dtype=torch.float32,
                reduce_dtype=torch.float16,
                buffer_dtype=torch.float32,
                cast_forward_inputs=cast_forward_inputs,
                # cast reduction for batchnorm also just in this test, to make
                # validation easier.
                _module_classes_to_ignore=[],
            )
            model = TransformerWithSharedParams.init(
                self.process_group,
                FSDPInitMode.RECURSIVE,
                DEVICEInitMode.DEVICE_BEFORE,
                {"mixed_precision": mp_config},
            )
            # Patch reduce_scatter to add validation for mixed precision types.
            orig_reduce_scatter = dist.reduce_scatter_tensor
            test_reduce_scatter = partial(
                self._reduce_scatter_validate_mp,
                orig_reduce_scatter,
                mp_config,
                not use_full_prec_in_eval,
            )
            model.eval()
            with patch_reduce_scatter(test_reduce_scatter, torch.float32):
                inp = model.get_input(torch.device("cuda"))
                output = model(*inp)
                loss = model.get_loss(inp, output).cuda()
                model.run_backward(loss)

    @skip_if_lt_x_gpu(2)
    def test_input_grads_with_param_mixed_precision(self):
        """
        Tests that input tensors that require gradients do get their gradients
        even after being cast to a low precision (when parameter mixed
        precision is enabled).
        """
        self.run_subtests(
            {
                "sharding_strategy": [
                    ShardingStrategy.FULL_SHARD,
                    ShardingStrategy.SHARD_GRAD_OP,
                    ShardingStrategy.NO_SHARD,
                ],
                "use_orig_params": [False, True],
            },
            self._test_input_grads_with_param_mixed_precision,
        )

    def _test_input_grads_with_param_mixed_precision(
        self,
        sharding_strategy: ShardingStrategy,
        use_orig_params: bool,
    ):
        model = nn.Linear(1024, 1024, bias=False)
        mixed_precision = MixedPrecision(
            param_dtype=torch.float16,
            reduce_dtype=torch.float32,
            buffer_dtype=torch.float32,
        )
        fsdp_model = FSDP(
            model,
            sharding_strategy=sharding_strategy,
            mixed_precision=mixed_precision,
            device_id=torch.cuda.current_device(),
            use_orig_params=use_orig_params,
        )
        # Use an input with dtype not equal to the mixed precision
        # `param_dtype` so that it gets cast
        x_float = torch.randn(
            (32, 1024),
            device="cuda",
            dtype=torch.float32,
            requires_grad=True,
        )
        fsdp_model(x_float).sum().backward()
        self.assertTrue(x_float.grad is not None)
        # Check that `x_float` preserves its dtype, meaning that the gradient
        # propagated via `ToCopyBackward0`
        self.assertEqual(x_float.grad.dtype, torch.float32)


class TestFSDPMixedPrecisionUnsharded(TestFSDPMixedPrecision):
    """
    Smaller test suite for unshared param (i.e. world_size == 1) case.
    """

    @property
    def world_size(self):
        return 1

    @skip_if_lt_x_gpu(1)
    def test_grads_reduced_precision(self):
        self.run_subtests(
            {"offload_params": [False, True], "use_orig_params": [False, True]},
            self._test_grads_reduced_precision,
        )

    @skip_if_lt_x_gpu(1)
    def test_mixed_precision_no_reshard_after_forward(self):
        # Note that we don't exercise all possible different configs so as to
        # not increase test TTS too much.
        mp = default_mp if not nccl_supports_bf16 else mp_diff_buffer_and_reduce
        self._run_test_mixed_precision_e2e(
            mp_config=mp,
            cpu_offload=CPUOffload(offload_params=True),
            backward_prefetch=None,
            forward_prefetch=False,
            full_precision_param_dtype=torch.float64,
            sharding_strategy=ShardingStrategy.SHARD_GRAD_OP,
            enable_sharded_grad_scaler=False,
        )

    @skip_if_lt_x_gpu(1)
    def test_mixed_precision_e2e_full_shard(self):
        mp = default_mp if not nccl_supports_bf16 else mp_diff_buffer_and_reduce
        self._run_test_mixed_precision_e2e(
            mp_config=mp,
            cpu_offload=CPUOffload(offload_params=True),
            backward_prefetch=None,
            forward_prefetch=False,
            full_precision_param_dtype=torch.float64,
            sharding_strategy=ShardingStrategy.FULL_SHARD,
            enable_sharded_grad_scaler=False,
        )


instantiate_parametrized_tests(TestFSDPMixedPrecisionSharded)


class IgnoredModule(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.l = nn.Linear(100, 100)

    def forward(self, x):
        return self.l(x)


class ModelWithIgnoredModule(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.l1 = nn.Linear(100, 100)
        self.ignored = IgnoredModule()
        self.l2 = nn.Linear(100, 100)

    def forward(self, x):
        return self.l2(self.ignored(self.l1(x)))


class TestFSDPMixedPrecisionIgnoredModules(FSDPTest):
    @property
    def world_size(self):
        return 1

    @skip_if_lt_x_gpu(1)
    def test_mixed_precision_with_ignored_module(self):
        model = ModelWithIgnoredModule().cuda()
        float16 = MixedPrecision(param_dtype=torch.float16)
        model = FSDP(
            model,
            ignored_modules=[model.ignored],
            mixed_precision=float16,
        )

        x = torch.ones(2, 100, device=torch.cuda.current_device())

        with self.assertRaisesRegex(RuntimeError, "must have the same dtype"):
            model(x).sum().backward()


class TestFSDPDifferentSubmodulePrecision(FSDPTest):
    @property
    def world_size(self):
        return 2

    @skip_if_lt_x_gpu(2)
    def test_float16_on_one_submodule(self):
        forward_inputs: Dict[str, nn.Module] = {}
        float16 = MixedPrecision(param_dtype=torch.float16, cast_forward_inputs=True)

        model = SaveForwardInputsModel(
            forward_inputs,
            cast_forward_inputs=False,
        ).cuda()
        c1, c2 = model.c1, model.c2
        x = torch.zeros(2, 100, device="cuda")

        # float16 on one submodule and float32 on everything else
        model.c2 = FSDP(model.c2, mixed_precision=float16)
        fsdp = FSDP(model)

        fsdp(x).sum().backward()

        self.assertEqual(forward_inputs[model].dtype, torch.float32)
        self.assertEqual(forward_inputs[c1].dtype, torch.float32)
        self.assertEqual(forward_inputs[c2].dtype, torch.float16)

    @skip_if_lt_x_gpu(2)
    def test_float16_on_one_submodule_skip_inputs(self):
        forward_inputs: Dict[nn.Module, torch.Tensor] = {}
        float16 = MixedPrecision(param_dtype=torch.float16, cast_forward_inputs=False)

        model = SaveForwardInputsModel(
            forward_inputs=forward_inputs, cast_forward_inputs=True
        ).cuda()
        c1, c2 = model.c1, model.c2
        x = torch.zeros(2, 100, device="cuda")

        # float16 on one submodule and float32 on everything else
        model.c2 = FSDP(model.c2, mixed_precision=float16)
        fsdp = FSDP(model)

        fsdp(x).sum().backward()

        self.assertEqual(forward_inputs[model].dtype, torch.float32)
        self.assertEqual(forward_inputs[c1].dtype, torch.float32)
        self.assertEqual(forward_inputs[c2].dtype, torch.float32)

    @skip_if_lt_x_gpu(2)
    def test_float16_on_one_submodule_skip_inputs_error(self):
        forward_inputs: Dict[nn.Module, torch.Tensor] = {}
        float16 = MixedPrecision(param_dtype=torch.float16, cast_forward_inputs=False)

        model = SaveForwardInputsModel(
            forward_inputs=forward_inputs, cast_forward_inputs=False
        ).cuda()
        c1, c2 = model.c1, model.c2
        x = torch.zeros(2, 100, device="cuda")

        # float16 on one submodule and float32 on everything else
        model.c2 = FSDP(model.c2, mixed_precision=float16)
        fsdp = FSDP(model)

        with self.assertRaisesRegex(
            RuntimeError, "mat1 and mat2 must have the same dtype"
        ):
            fsdp(x).sum().backward()

    @skip_if_lt_x_gpu(2)
    def test_submodules_with_different_precisions_error(self):
        forward_inputs: Dict[nn.Module, torch.Tensor] = {}
        float16 = MixedPrecision(param_dtype=torch.float16, cast_forward_inputs=True)
        float32 = MixedPrecision(param_dtype=torch.float32, cast_forward_inputs=True)

        model = SaveForwardInputsModel(
            forward_inputs=forward_inputs, cast_forward_inputs=False
        ).cuda()
        x = torch.zeros(2, 100, device="cuda")

        # For submodules with different precisions, right now current design
        # does not support the case when the root FSDP instance wraps a submodule
        # that is not the first one executed. Because for that submodule, its inputs
        # (or previous submodule's outputs) have no way to be casted, instead,
        # the root module's inputs are casted upfront before entering
        # root module's forward
        model.c1 = FSDP(model.c1, mixed_precision=float16)
        fsdp = FSDP(model, mixed_precision=float32)
        with self.assertRaisesRegex(
            RuntimeError, "mat1 and mat2 must have the same dtype"
        ):
            fsdp(x).sum().backward()

    @skip_if_lt_x_gpu(2)
    def test_submodules_with_different_precisions(self):
        forward_inputs: Dict[nn.Module, torch.Tensor] = {}
        float16 = MixedPrecision(param_dtype=torch.float16, cast_forward_inputs=True)
        float32 = MixedPrecision(param_dtype=torch.float32, cast_forward_inputs=True)

        model = SaveForwardInputsModel(
            forward_inputs=forward_inputs, cast_forward_inputs=False
        ).cuda()
        c1, c2 = model.c1, model.c2
        x = torch.zeros(2, 100, device="cuda")

        model.c2 = FSDP(model.c2, mixed_precision=float16)
        fsdp = FSDP(model, mixed_precision=float32)

        fsdp(x).sum().backward()

        self.assertEqual(forward_inputs[model].dtype, torch.float32)
        self.assertEqual(forward_inputs[c1].dtype, torch.float32)
        self.assertEqual(forward_inputs[c2].dtype, torch.float16)

    @skip_if_lt_x_gpu(2)
    def test_submodules_with_external_inputs(self):
        class ToyModule(nn.Module):
            def __init__(self, forward_inputs: Dict[str, torch.Tensor]) -> None:
                super().__init__()
                self.l = nn.Linear(100, 100)
                self.forward_inputs = forward_inputs

            def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
                self.forward_inputs["l2_input_x"] = x
                self.forward_inputs["l2_input_y"] = y
                return self.l(x)

        class ToyModel(nn.Module):
            def __init__(self, forward_inputs: Dict[str, torch.Tensor]) -> None:
                super().__init__()
                self.l1 = nn.Linear(100, 100)
                self.l2 = ToyModule(forward_inputs)
                self.forward_inputs = forward_inputs

            def forward(self, x: torch.Tensor) -> torch.Tensor:
                self.forward_inputs["model_input_x"] = x
                y = torch.ones(2, 100, device="cuda", dtype=torch.float32)
                return self.l2(self.l1(x), y)

        forward_inputs: Dict[str, torch.Tensor] = {}

        float16 = MixedPrecision(param_dtype=torch.float16)
        model = ToyModel(forward_inputs).cuda()
        x = torch.zeros(2, 100, device="cuda", dtype=torch.float32)
        model.l2 = FSDP(model.l2, mixed_precision=float16)
        fsdp = FSDP(model, mixed_precision=float16)

        fsdp(x).sum().backward()

        # Inputs are casted in root module in default, inputs of submodules are not
        # explicitly casted, so the external inputs ``y`` of module ``self.l2`` is
        # not casted.
        self.assertEqual(forward_inputs["model_input_x"].dtype, torch.float16)
        self.assertEqual(forward_inputs["l2_input_x"].dtype, torch.float16)
        self.assertEqual(forward_inputs["l2_input_y"].dtype, torch.float32)


class TestFSDPTrainEval(FSDPTest):
    @property
    def world_size(self):
        return 2

    @skip_if_lt_x_gpu(2)
    def test_train_ema_eval_flow(self):
        """
        Tests a train -> EMA update -> eval flow with mixed precision enabled.
        """
        self.run_subtests(
            {
                "sharding_strategy": [
                    # We mainly want to test `SHARD_GRAD_OP` since it surfaced
                    # the original bug of not using the right EMA parameters
                    # for eval, but we also test the others for completeness
                    ShardingStrategy.SHARD_GRAD_OP,
                    ShardingStrategy.FULL_SHARD,
                    ShardingStrategy.NO_SHARD,
                ]
            },
            self._test_train_ema_eval_flow,
        )

    def _test_train_ema_eval_flow(self, sharding_strategy: ShardingStrategy):
        class TransformerWithEMA(nn.Module):
            def __init__(self, device: torch.device):
                super().__init__()
                self.module = nn.Transformer(device=device)
                self.ema_module = AveragedModel(
                    nn.Transformer(device=device),
                    multi_avg_fn=torch.optim.swa_utils.get_ema_multi_avg_fn(),
                    use_buffers=True,
                )

            def forward(self, *args, **kwargs):
                # Use main copy for training and EMA copy for eval
                if self.training:
                    return self.module(*args, **kwargs)
                return self.ema_module(*args, **kwargs)

        device = torch.device("cuda")
        model = TransformerWithEMA(device=device)
        policy = ModuleWrapPolicy(
            {nn.Transformer, nn.TransformerEncoderLayer, nn.TransformerDecoderLayer}
        )
        mixed_precision = MixedPrecision(param_dtype=torch.float16)
        fsdp_model = FSDP(
            model,
            auto_wrap_policy=policy,
            mixed_precision=mixed_precision,
            sharding_strategy=sharding_strategy,
        )
        optim = torch.optim.Adam(fsdp_model.module.parameters(), lr=1e-2)
        if self.rank == 0:
            print(fsdp_model)
        torch.manual_seed(1 + self.rank)
        eval_src = torch.randn((8, 1, 512), device=device)
        eval_tgt = torch.randn((16, 1, 512), device=device)
        eval_out_sums: List[torch.Tensor] = []
        # An iteration consists of training forward/backward/optimizer,
        # updating the EMA copy with the main copy, and eval forward
        for _ in range(3):
            fsdp_model.train()
            train_src = torch.randn((8, 4, 512), device=device)
            train_tgt = torch.randn((16, 4, 512), device=device)
            train_out = fsdp_model(train_src, train_tgt)
            train_out.sum().backward()
            optim.step()
            optim.zero_grad()
            with FSDP.summon_full_params(fsdp_model):
                fsdp_model.ema_module.update_parameters(fsdp_model.module)
            fsdp_model.eval()
            with torch.no_grad():
                eval_out = fsdp_model(eval_src, eval_tgt)
            eval_out_sums.append(eval_out.sum())
        # Check that the eval outputs differ from iteration to iteration as a
        # proxy for eval using the correct EMA parameters
        for i in range(len(eval_out_sums) - 1):
            self.assertNotEqual(eval_out_sums[i], eval_out_sums[i + 1])
        self.assertNotEqual(eval_out_sums[0], eval_out_sums[-1])


if __name__ == "__main__":
    run_tests()