1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
|
# Owner(s): ["oncall: distributed"]
import bisect
import sys
from copy import deepcopy
from enum import auto, Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._state_dict_utils import _gather_state_dict
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_WRAPPED_MODULE,
apply_activation_checkpointing,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import ShardingStrategy
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateKeyType,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictSettings,
StateDictType,
)
from torch.distributed.optim import _NamedOptimizer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
DEVICEInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
STATE_DICT_TYPES = [StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT]
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
class _OSDCommMethod(Enum):
"""Method for communicating the optimizer state dict for internal tests."""
BROADCAST_OBJECT_LIST = auto()
SCATTER_FULL_OSD = auto()
FLATTEN_SHARDED_OSD = auto()
OPTIM_STATE_DICT = auto()
class _ModelClass(Enum):
"""Different model type to test."""
NESTED = auto()
TRANSFORMER = auto()
class Bias(torch.nn.Module):
"""This module applies a 1D additive bias with dimension ``dim``."""
def __init__(self, dim: int) -> None:
super().__init__()
assert dim > 0
torch.manual_seed(0)
self.bias = torch.nn.Parameter(torch.randn((dim,)))
def forward(self, x):
return x + self.bias
class BlockA(torch.nn.Module):
"""
Used to define interesting nested structure for FSDP wrapping.
BlockA
Bias0
bias
weight
Bias1
bias
"""
def __init__(self, in_dim: int, out_dim: int) -> None:
super().__init__()
assert all(v > 0 for v in (in_dim, out_dim))
torch.manual_seed(0)
self.bias_module0 = Bias(out_dim)
self.weight = torch.nn.Parameter(torch.randn((in_dim, out_dim)))
self.bias_module1 = Bias(out_dim)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = x @ self.weight
x = self.bias_module0(x)
x = self.relu(x) # ensure biases have different gradients
x = self.bias_module1(x)
return x
class BlockB(torch.nn.Module):
"""
Used to define interesting nested structure for FSDP wrapping.
BlockB
weight
Bias
bias
Bias
bias
"""
def __init__(self, in_dim: int, out_dim: int) -> None:
super().__init__()
assert all(v > 0 for v in (in_dim, out_dim))
torch.manual_seed(0)
self.weight = torch.nn.Parameter(torch.randn((in_dim, out_dim)))
self.bias_module0 = Bias(out_dim)
self.bias_module1 = Bias(out_dim)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = x @ self.weight
x = self.bias_module0(x)
x = self.relu(x) # ensure biases have different gradients
x = self.bias_module1(x)
return x
class NestedModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.block0 = BlockB(5, 3)
self.block1 = BlockB(3, 7)
self.bias = torch.nn.Parameter(torch.randn((5,)))
self.block2 = torch.nn.Sequential(
BlockA(7, 9),
BlockA(9, 9),
BlockB(9, 5),
)
self.relu = torch.nn.ReLU()
def forward(self, x) -> torch.Tensor:
x = self.relu(self.block0(x))
x = self.relu(self.block1(x))
x = self.relu(self.block2(x))
x = x + self.bias
return x
def get_input(self, device):
BATCH_SIZE = 8
return (torch.randn((BATCH_SIZE, 5)).to(device),)
def get_loss(self, inp, output):
return output.sum()
def run_backward(self, loss):
loss.backward()
@staticmethod
def wrap(
model: torch.nn.Module,
group: Optional[dist.ProcessGroup] = None,
ignore_modules: bool = False,
fsdp_kwargs: Optional[Dict[str, Any]] = None,
) -> torch.nn.Module:
if fsdp_kwargs is None:
fsdp_kwargs = {}
# Flatten Bias0; then flatten weight and Bias1 together into `block1`
model.block1.bias_module0 = FSDP(
model.block1.bias_module0,
process_group=group,
**fsdp_kwargs,
)
model.block1 = FSDP(model.block1, process_group=group, **fsdp_kwargs)
# Flatten Bias0; flatten Bias1; then flatten weight into `block2[1]`
model.block2[1].bias_module0 = FSDP(
model.block2[1].bias_module0,
process_group=group,
**fsdp_kwargs,
)
model.block2[1].bias_module1 = FSDP(
model.block2[1].bias_module1,
process_group=group,
**fsdp_kwargs,
)
model.block2[1] = FSDP(model.block2[1], process_group=group, **fsdp_kwargs)
# Flatten weight, Bias, bias into `block2[2]`
ignored_modules = [model.block2[2].bias_module0] if ignore_modules else None
model.block2[2] = FSDP(
model.block2[2],
process_group=group,
ignored_modules=ignored_modules,
**fsdp_kwargs,
)
return model
@staticmethod
def wrap_alt(
model: torch.nn.Module,
group: Optional[dist.ProcessGroup] = None,
fsdp_kwargs: Optional[Dict[str, Any]] = None,
) -> torch.nn.Module:
if fsdp_kwargs is None:
fsdp_kwargs = {}
model.block0.bias_module0 = FSDP(
model.block0.bias_module0,
process_group=group,
**fsdp_kwargs,
)
model.block0 = FSDP(model.block0, process_group=group, **fsdp_kwargs)
return model
@staticmethod
def wrap_with_unmanaged_params(
model,
add_to_fsdp_module: bool,
group=None,
) -> Tuple[torch.nn.Module, List[torch.nn.Parameter]]:
"""Registers unmanaged parameters before wrapping with :meth:`wrap`."""
device = next(model.parameters()).device
unmanaged_param = torch.nn.Parameter(torch.randn(5, 5, device=device))
# Either register the parameter to a module to be wrapped with FSDP
# (`model.block2[2]`) or a module not to be wrapped with FSDP (`model`)
register_module = model.block2[2] if add_to_fsdp_module else model
register_module.register_parameter(
"unmanaged_param",
unmanaged_param,
)
# For simplicity, we only add a single unmanaged parameter, but should
# be easy to generalize if needed
return NestedModel.wrap(model, group), [unmanaged_param]
@staticmethod
def add_unmanaged_param_entry(osd, unmanaged_param, step) -> None:
"""Adds an entry for the unmanaged parameter ``unmanaged_param``
assuming Adam optimizer and a single parameter group."""
# The unmanaged parameters should be passed to this method in
# `model.parameters()` order since their parameter IDs will be assigned
# in order of the skipped IDs
# Assign a parameter ID to the unmanaged parameter
unmanaged_param_id = -1
param_ids = osd["param_groups"][0]["params"]
for i in range(1, len(param_ids)):
diff = param_ids[i] - param_ids[i - 1]
if diff != 1:
assert diff > 1, f"Invalid IDs: {param_ids[i - 1]} {param_ids[i]}"
unmanaged_param_id = param_ids[i - 1] + 1
break
if unmanaged_param_id == -1:
unmanaged_param_id = len(param_ids) # last ID skipped
assert unmanaged_param_id >= 0, "One parameter ID should be skipped"
# Add a state entry for the unmanaged parameter
state_device = next(iter(next(iter(osd["state"].values())).values())).device
osd["state"][unmanaged_param_id] = {
"step": torch.tensor(float(step), device=state_device),
"exp_avg": torch.randn(unmanaged_param.shape, device=state_device),
"exp_avg_sq": torch.randn(unmanaged_param.shape, device=state_device),
}
# Insert the ID into the parameter group in order
bisect.insort(osd["param_groups"][0]["params"], unmanaged_param_id)
# NOTE: We exclude `self.bias` from either parameter group to test the
# case where the optimizer input does not include all model parameters
def param_group0(self) -> List[torch.nn.Parameter]:
# Use `block1`'s parameters for the first parameter group to deviate
# from the `model.parameters()` order
return list(self.block1.parameters())
def param_group1(self) -> List[torch.nn.Parameter]:
# Deviate from the `model.parameters()` order further by rearranging
# `block2`'s parameters to be before `block0`'s parameters
return list(self.block2.parameters()) + list(self.block0.parameters())
# Simple and boring model to test interface and some corner cases that do not
# require complicated wrapping strategy.
class TestDummyModel(torch.nn.Module):
def __init__(self, no_grad: bool = False):
super().__init__()
torch.manual_seed(0)
self.net1 = nn.Sequential(nn.Linear(8, 16), nn.ReLU())
self.net1[0].weight.requires_grad = not no_grad
self.net1[0].bias.requires_grad = not no_grad
self.net2 = nn.Sequential(nn.Linear(16, 32), nn.ReLU())
self.net3 = nn.Linear(32, 64)
self.net4 = nn.Sequential(nn.ReLU(), nn.Linear(64, 8))
def forward(self, x):
return self.net4(self.net3(self.net2(self.net1(x))))
def get_input(self):
return torch.rand(8, 8, device="cuda")
class TestFSDPOptimState(FSDPTest):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._model_class = {
_ModelClass.NESTED: self._init_nested_model,
_ModelClass.TRANSFORMER: self._init_transformer_model,
}
def _init_nested_model(
self,
wrap: bool,
wrap_alt: bool = False, # ignored if `wrap=False`
device: torch.device = torch.device("cuda"),
group=None,
optim_class: Type[torch.optim.Optimizer] = torch.optim.Adam,
use_multiple_param_groups: bool = False,
use_diff_optim_inputs: bool = False,
fsdp_kwargs: Optional[Dict[str, Any]] = None,
):
model = NestedModel().to(device)
if wrap:
model = (
NestedModel.wrap_alt(model, group, fsdp_kwargs)
if wrap_alt
else NestedModel.wrap(model, group, fsdp_kwargs=fsdp_kwargs)
)
if not use_multiple_param_groups:
optim_input = list(model.parameters())
else:
optim_input = [
{"params": model.param_group0()},
{"params": model.param_group1(), "weight_decay": 0.9},
]
# Use a reversed parameter order for the optimizer input on odd ranks
if use_diff_optim_inputs and self.rank % 2 == 1:
if isinstance(optim_input[0], dict):
for param_group in optim_input:
param_group["params"] = list(reversed(param_group["params"]))
else:
optim_input = list(reversed(optim_input))
optim = optim_class(optim_input, lr=0.01)
return model, optim, optim_input
def _init_transformer_model(
self,
wrap: bool,
device: torch.device = torch.device("cuda"),
group=None,
optim_class: Type[torch.optim.Optimizer] = torch.optim.Adam,
use_multiple_param_groups: bool = False,
use_diff_optim_inputs: bool = False,
):
if use_multiple_param_groups or use_diff_optim_inputs:
# Keep these as arguments for parity with `_init_nested_model()`;
# these settings are not implemented since the transformer is
# wrapped with FSDP at the top-level, which means that there is
# only a single flat parameter, making these booleans vacuous
raise NotImplementedError
if group is None:
group = dist.distributed_c10d._get_default_group()
model = TransformerWithSharedParams.init(
group,
FSDPInitMode.RECURSIVE if wrap else FSDPInitMode.NO_FSDP,
DEVICEInitMode.DEVICE_BEFORE,
deterministic=True,
)
optim = optim_class(model.parameters(), lr=0.01)
return model, optim, None
def _step_model(
self,
model: torch.nn.Module,
optim: torch.optim.Optimizer,
device: torch.device = torch.device("cuda"),
num_iters: int = 1,
) -> List[float]:
"""Performs a forward pass, backward pass, and optimizer step
``num_iters``-many times, and returns the per-iteration losses."""
torch.manual_seed(0) # set seed for determinism
losses = []
module = getattr(model, "module", model)
for _ in range(num_iters):
optim.zero_grad()
inp = module.get_input(device)
output = model(*inp)
loss = module.get_loss(inp, output).to(device)
losses.append(loss.item())
module.run_backward(loss)
optim.step()
return losses
def _broadcast_full_osd(self, full_osd: Dict[str, Any], group=None):
"""Broadcasts the full optimizer state dict in place of using
``torch.save()`` and ``torch.load()`` so that all ranks can have it."""
obj_list = [full_osd]
dist.broadcast_object_list(
obj_list,
src=0,
group=group,
)
full_osd = obj_list[0]
return full_osd
def _are_equal_states(
self,
state1: Dict[str, Any],
state2: Dict[str, Any],
) -> bool:
"""Checks if ``state1`` and ``state2`` contain the same mappings."""
if set(state1.keys()) != set(state2.keys()):
return False
for state_name, value1 in state1.items():
value2 = state2[state_name]
if type(value1) != type(value2):
return False
if torch.is_tensor(value1): # tensor state
assert torch.is_tensor(value2)
# Check the values on CPU to be device-agnostic
value1 = value1.cpu()
value2 = value2.cpu()
if value1.shape != value2.shape or not torch.all(
torch.isclose(value1, value2)
):
return False
else: # non-tensor state
if value1 != value2:
return False
return True
def _check_same_state(
self,
fsdp_osd,
ref_osd,
check_same_param_keys: bool,
):
"""Checks that ``full_osd`` and ``ref_osd`` have the same "state" part.
If ``check_same_param_keys=True``, then checks that the parameter keys
match (e.g. when both should be parameter names), and does not check
the parameter keys otherwise."""
assert "state" in ref_osd
self.assertTrue("state" in fsdp_osd)
ref_osd_state = ref_osd["state"]
fsdp_osd_state = {
k: _gather_state_dict(v) for k, v in fsdp_osd["state"].items()
}
if check_same_param_keys:
# Check parameter keys are the same first for earlier erroring
ref_osd_param_ids = set(ref_osd_state.keys())
fsdp_osd_param_ids = set(fsdp_osd_state.keys())
self.assertTrue(
ref_osd_param_ids == fsdp_osd_param_ids,
f"Rank {self.rank}: {(ref_osd_param_ids, fsdp_osd_param_ids)}",
)
# Check state values are the same
for param_id, param_state in fsdp_osd_state.items():
for state_name, value in param_state.items():
ref_value = ref_osd_state[param_id][state_name]
self.assertEqual(value, ref_value)
return
# Otherwise, only require the parameter keys to be isomorphic (e.g.
# between IDs and names)
ref_osd_states = list(ref_osd_state.values())
fsdp_osd_states = list(fsdp_osd_state.values())
self.assertEqual(len(ref_osd_states), len(fsdp_osd_states))
# Use brute-force quadratic-time comparison since it is hard to
# hash a tensor by value instead of by object
for fsdp_osd_state in fsdp_osd_states:
# Check for at least one match (may be > 1 in toy edge cases, e.g.
# multiple biases); nonetheless, each having >= 1 match and the two
# lists having equal length imply that the list contents are equal
self.assertTrue(
any(
self._are_equal_states(fsdp_osd_state, ref_osd_state)
for ref_osd_state in ref_osd_states
)
)
def _check_same_param_groups(
self,
full_osd,
ref_osd,
check_same_param_keys: bool,
):
"""Checks that ``full_osd`` and ``ref_osd`` have the same
"param_groups" part. If ``check_same_param_keys=True`, then checks that
the parameter keys match (e.g. when both should be parameter names),
and does not check the parameter keys otherwise."""
assert "param_groups" in ref_osd
self.assertTrue("param_groups" in full_osd)
ref_osd_param_groups = ref_osd["param_groups"]
full_osd_param_groups = full_osd["param_groups"]
self.assertTrue(len(full_osd_param_groups), len(ref_osd_param_groups))
for full_osd_pg, ref_osd_pg in zip(
full_osd_param_groups,
ref_osd_param_groups,
):
self.assertEqual(
set(full_osd_pg.keys()),
set(ref_osd_pg.keys()),
)
for name, full_osd_value in full_osd_pg.items():
if name == "params" and not check_same_param_keys:
continue
self.assertEqual(full_osd_value, ref_osd_pg[name])
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", STATE_DICT_TYPES)
@parametrize("use_multiple_param_groups", [False, True])
@parametrize("rank0_only", [False, True])
@parametrize("use_diff_optim_inputs", [False, True])
def test_optim_state_dict_nested(
self,
state_dict_type: StateDictType,
use_multiple_param_groups: bool,
rank0_only: bool,
use_diff_optim_inputs: bool,
) -> None:
"""
Tests :meth:`full_optim_state_dict` and meth:`sharded_optim_state_dict`
by comparing the returned dict for an FSDP-wrapped model with that of
an equivalent non-wrapped model.
The test checks the equivalence excluding the parameter keys since the
FSDP and normal optimizer state dicts key by names and IDs,
respectively. This means that the test can pass even if parameter keys
are incorrectly mapped to values. Their correct mapping is tested in
other tests that exercise the save/load workflow.
"""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_optim_state_dict_nested,
state_dict_type=state_dict_type,
use_multiple_param_groups=use_multiple_param_groups,
rank0_only=rank0_only,
use_diff_optim_inputs=use_diff_optim_inputs,
)
def _test_optim_state_dict_nested(
self,
state_dict_type: StateDictType,
use_multiple_param_groups: bool,
rank0_only: bool,
use_diff_optim_inputs: bool,
use_optim_input: bool,
) -> None:
if rank0_only and state_dict_type == StateDictType.SHARDED_STATE_DICT:
return # not supported
NUM_ITERS = 3
model1, optim1, optim_input = self._init_nested_model(
wrap=True,
use_multiple_param_groups=use_multiple_param_groups,
use_diff_optim_inputs=use_diff_optim_inputs,
)
losses1 = self._step_model(model1, optim1, num_iters=NUM_ITERS)
if state_dict_type == StateDictType.FULL_STATE_DICT:
if use_optim_input:
fsdp_osd = FSDP.full_optim_state_dict(
model1,
optim1,
optim_input,
rank0_only=rank0_only,
)
else:
fsdp_osd = FSDP.full_optim_state_dict(
model1,
optim1,
rank0_only=rank0_only,
)
else:
fsdp_osd = FSDP.sharded_optim_state_dict(model1, optim1)
# Non-target ranks get an empty state dict
if rank0_only and self.rank != 0:
self.assertEqual(len(fsdp_osd), 0)
return
model2, optim2, _ = self._init_nested_model(
wrap=False,
use_multiple_param_groups=use_multiple_param_groups,
use_diff_optim_inputs=use_diff_optim_inputs,
)
losses2 = self._step_model(model2, optim2, num_iters=NUM_ITERS)
ref_osd = optim2.state_dict()
# Check the losses to eliminate model drift as a source of error
for i, (l1, l2) in enumerate(zip(losses1, losses2)):
assert l1 == l2, f"Losses differ on iter {i}: {l1:.5f} {l2:.5f}"
# Do not check the parameter keys since the full/sharded optimizer state
# dict uses parameter names, while the non-wrapped equivalent uses
# parameter IDs
check_same_param_keys = False
self._check_same_param_groups(
fsdp_osd,
ref_osd,
check_same_param_keys=check_same_param_keys,
)
self._check_same_state(
fsdp_osd,
ref_osd,
check_same_param_keys=check_same_param_keys,
)
@skip_if_lt_x_gpu(2)
def test_full_optim_state_dict_keys(self):
"""Tests that the parameter keys returned by
:meth:`full_optim_state_dict` match those of :meth:`state_dict` with
full ``state_dict_type`` for a non-FSDP-root model with nested FSDP
instances and ignored modules."""
device = torch.device("cuda")
model = NestedModel().to(device)
wrapped_model = NestedModel.wrap(model, ignore_modules=True)
# Add checkpointing to ensure optim_state_dict and state_dict strip out
# checkpointing prefixes.
apply_activation_checkpointing(
model, check_fn=lambda module: isinstance(module, torch.nn.Sequential)
)
optim = torch.optim.Adam(wrapped_model.parameters(), lr=1e-3)
self._step_model(model, optim, device)
optim_state_dict = FSDP.full_optim_state_dict(
wrapped_model, optim, rank0_only=False
)
with FSDP.state_dict_type(wrapped_model, StateDictType.FULL_STATE_DICT):
state_dict = wrapped_model.state_dict()
self.assertEqual(optim_state_dict["state"].keys(), state_dict.keys())
# Check that checkpointing prefix was indeed stripped.
for key in optim_state_dict["state"]:
self.assertNotIn(_CHECKPOINT_WRAPPED_MODULE, key)
@skip_if_lt_x_gpu(2)
def test_full_optim_state_dict_nested_invalid(self):
"""Tests that :meth:`full_optim_state_dict` raises an error when
nonzero ranks are missing the optimizer state for parameters on rank
0."""
device = torch.device("cuda")
model = NestedModel.wrap(NestedModel().to(device), None)
optim_input = list(model.parameters())
if self.rank != 0:
# Exclude a parameter so that nonzero ranks are missing state
optim_input = optim_input[:-1]
optim = torch.optim.Adam(optim_input, lr=1e-3)
self._step_model(model, optim, num_iters=3)
error_regex = (
"FSDP currently requires each rank to have at least the "
"optimizer states needed by rank 0's optimizer but some ranks "
"are missing some of those states"
)
with self.assertRaisesRegex(RuntimeError, error_regex):
FSDP.full_optim_state_dict(model, optim)
@skip_if_lt_x_gpu(2)
@parametrize("use_multiple_param_groups", [False, True])
@parametrize("wrap_alt", [False, True])
@parametrize("use_diff_optim_inputs", [False, True])
def test_shard_full_optim_state_dict_nested(
self,
use_multiple_param_groups: bool,
wrap_alt: bool,
use_diff_optim_inputs: bool,
):
"""Tests :meth:`shard_full_optim_state_dict` for a non-FSDP-root model
with nested FSDP instances."""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_load_optim_state,
model_class=_ModelClass.NESTED,
use_multiple_param_groups=use_multiple_param_groups,
halve_world_size=False,
osd_comm_method=_OSDCommMethod.BROADCAST_OBJECT_LIST,
use_diff_optim_inputs=use_diff_optim_inputs,
wrap_alt=wrap_alt,
num_iters=3,
)
self._test_load_optim_state_with_optim_state_dict(
_ModelClass.NESTED,
state_dict_settings=StateDictSettings(
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(),
FullOptimStateDictConfig(),
),
use_multiple_param_groups=False,
halve_world_size=False,
use_diff_optim_inputs=use_diff_optim_inputs,
wrap_alt=wrap_alt,
num_iters=3,
)
@skip_if_lt_x_gpu(2)
def test_shard_full_optim_state_dict_nested_halve_world_size(self):
"""Tests :meth:`shard_full_optim_state_dict` for a non-FSDP-root model
with nested FSDP instances when loading into a new process group with
halved world size."""
# To save CI costs, we test with the "harder" settings:
use_multiple_param_groups = True
use_diff_optim_inputs = True
wrap_alt = True
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_load_optim_state,
model_class=_ModelClass.NESTED,
use_multiple_param_groups=use_multiple_param_groups,
halve_world_size=True,
osd_comm_method=_OSDCommMethod.BROADCAST_OBJECT_LIST,
use_diff_optim_inputs=use_diff_optim_inputs,
wrap_alt=wrap_alt,
num_iters=3,
)
self._test_load_optim_state_with_optim_state_dict(
_ModelClass.NESTED,
state_dict_settings=StateDictSettings(
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(),
FullOptimStateDictConfig(),
),
use_multiple_param_groups=use_multiple_param_groups,
halve_world_size=True,
use_diff_optim_inputs=use_diff_optim_inputs,
wrap_alt=wrap_alt,
num_iters=3,
)
@skip_if_lt_x_gpu(2)
def test_shard_full_optim_state_dict_transformer(self) -> None:
"""Tests :meth:`shard_full_optim_state_dict` for an FSDP-root
transformer model with shared parameters."""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_load_optim_state,
model_class=_ModelClass.TRANSFORMER,
use_multiple_param_groups=False,
halve_world_size=True,
osd_comm_method=_OSDCommMethod.BROADCAST_OBJECT_LIST,
use_diff_optim_inputs=False,
num_iters=3,
)
self._test_load_optim_state_with_optim_state_dict(
_ModelClass.TRANSFORMER,
state_dict_settings=StateDictSettings(
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(),
FullOptimStateDictConfig(),
),
use_multiple_param_groups=False,
halve_world_size=True,
use_diff_optim_inputs=False,
num_iters=3,
)
@skip_if_lt_x_gpu(2)
@parametrize("use_multiple_param_groups", [False, True])
@parametrize("wrap_alt", [False, True])
@parametrize("use_diff_optim_inputs", [False, True])
def test_scatter_full_optim_state_dict_nested(
self,
use_multiple_param_groups: bool,
wrap_alt: bool,
use_diff_optim_inputs: bool,
):
"""Tests :meth:`scatter_full_optim_state_dict` for a non-FSDP-root
model with nested FSDP instances."""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_load_optim_state,
model_class=_ModelClass.NESTED,
use_multiple_param_groups=use_multiple_param_groups,
halve_world_size=False,
osd_comm_method=_OSDCommMethod.SCATTER_FULL_OSD,
use_diff_optim_inputs=use_diff_optim_inputs,
wrap_alt=wrap_alt,
num_iters=3,
)
self._test_load_optim_state_with_optim_state_dict(
_ModelClass.NESTED,
state_dict_settings=StateDictSettings(
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(),
FullOptimStateDictConfig(rank0_only=True),
),
use_multiple_param_groups=use_multiple_param_groups,
halve_world_size=False,
use_diff_optim_inputs=use_diff_optim_inputs,
wrap_alt=wrap_alt,
num_iters=3,
)
@skip_if_lt_x_gpu(2)
def test_scatter_full_optim_state_dict_nested_halve_world_size(self):
"""Tests :meth:`scatter_full_optim_state_dict` for a non-FSDP-root
model with nested FSDP instances when loading into a new process group
with halved world size."""
# To save CI costs, we test with the "harder" settings:
use_multiple_param_groups = True
use_diff_optim_inputs = True
wrap_alt = True
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_load_optim_state,
model_class=_ModelClass.NESTED,
use_multiple_param_groups=use_multiple_param_groups,
halve_world_size=True,
osd_comm_method=_OSDCommMethod.SCATTER_FULL_OSD,
use_diff_optim_inputs=use_diff_optim_inputs,
wrap_alt=wrap_alt,
num_iters=3,
)
self._test_load_optim_state_with_optim_state_dict(
_ModelClass.NESTED,
state_dict_settings=StateDictSettings(
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(),
FullOptimStateDictConfig(rank0_only=True),
),
use_multiple_param_groups=use_multiple_param_groups,
halve_world_size=True,
use_diff_optim_inputs=use_diff_optim_inputs,
wrap_alt=wrap_alt,
num_iters=3,
)
@skip_if_lt_x_gpu(2)
def test_scatter_full_optim_state_dict_transformer(self) -> None:
"""Tests :meth:`scatter_full_optim_state_dict` for an FSDP-root
transformer model with shared parameters."""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_load_optim_state,
model_class=_ModelClass.TRANSFORMER,
use_multiple_param_groups=False,
halve_world_size=True,
osd_comm_method=_OSDCommMethod.SCATTER_FULL_OSD,
use_diff_optim_inputs=False,
num_iters=3,
)
self._test_load_optim_state_with_optim_state_dict(
_ModelClass.TRANSFORMER,
state_dict_settings=StateDictSettings(
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(),
FullOptimStateDictConfig(rank0_only=True),
),
use_multiple_param_groups=False,
halve_world_size=True,
use_diff_optim_inputs=False,
num_iters=3,
)
@skip_if_lt_x_gpu(2)
def test_flatten_sharded_optim_state_dict_nested(self) -> None:
"""Tests :meth:`flatten_sharded_optim_state_dict` for an FSDP-root
nested model."""
self._test_load_optim_state(
_ModelClass.NESTED,
use_multiple_param_groups=False,
halve_world_size=False,
osd_comm_method=_OSDCommMethod.FLATTEN_SHARDED_OSD,
use_diff_optim_inputs=False,
use_optim_input=False,
wrap_alt=True,
num_iters=3,
)
self._test_load_optim_state_with_optim_state_dict(
_ModelClass.NESTED,
state_dict_settings=StateDictSettings(
StateDictType.SHARDED_STATE_DICT,
ShardedStateDictConfig(),
ShardedOptimStateDictConfig(),
),
use_multiple_param_groups=False,
halve_world_size=False,
use_diff_optim_inputs=False,
wrap_alt=True,
num_iters=3,
)
@skip_if_lt_x_gpu(2)
def test_flatten_sharded_optim_state_dict_transformer(self) -> None:
"""Tests :meth:`flatten_sharded_optim_state_dict` for an FSDP-root
transformer model."""
self._test_load_optim_state(
_ModelClass.TRANSFORMER,
use_multiple_param_groups=False,
halve_world_size=False,
osd_comm_method=_OSDCommMethod.FLATTEN_SHARDED_OSD,
use_diff_optim_inputs=False,
use_optim_input=False,
num_iters=3,
)
self._test_load_optim_state_with_optim_state_dict(
_ModelClass.TRANSFORMER,
state_dict_settings=StateDictSettings(
StateDictType.SHARDED_STATE_DICT,
ShardedStateDictConfig(),
ShardedOptimStateDictConfig(),
),
use_multiple_param_groups=False,
halve_world_size=False,
use_diff_optim_inputs=False,
num_iters=3,
)
@skip_if_lt_x_gpu(2)
def test_use_orig_params(self) -> None:
"""Tests :meth:`optim_state_dict` for an FSDP-root nested model."""
self.run_subtests(
{
"halve_world_size": [True, False],
"wrap_alt": [True, False],
},
self._test_load_optim_state_with_optim_state_dict,
model_class=_ModelClass.NESTED,
state_dict_settings=StateDictSettings(
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(),
FullOptimStateDictConfig(),
),
use_multiple_param_groups=False,
use_diff_optim_inputs=False,
num_iters=3,
fsdp_kwargs={"use_orig_params": True},
)
self.run_subtests(
{
"halve_world_size": [True, False],
"wrap_alt": [True, False],
},
self._test_load_optim_state_with_optim_state_dict,
model_class=_ModelClass.NESTED,
state_dict_settings=StateDictSettings(
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(),
FullOptimStateDictConfig(rank0_only=True),
),
use_multiple_param_groups=False,
use_diff_optim_inputs=False,
num_iters=3,
fsdp_kwargs={"use_orig_params": True},
)
self.run_subtests(
{
"wrap_alt": [True, False],
},
self._test_load_optim_state_with_optim_state_dict,
model_class=_ModelClass.NESTED,
state_dict_settings=StateDictSettings(
StateDictType.SHARDED_STATE_DICT,
ShardedStateDictConfig(),
ShardedOptimStateDictConfig(),
),
use_multiple_param_groups=False,
# We cannot test halve_world_size with SHARDED_STATE_DICT.
halve_world_size=False,
use_diff_optim_inputs=False,
num_iters=3,
fsdp_kwargs={"use_orig_params": True},
)
def _test_load_optim_state(
self,
model_class: _ModelClass,
use_multiple_param_groups: bool,
halve_world_size: bool,
osd_comm_method: _OSDCommMethod,
use_diff_optim_inputs: bool,
use_optim_input: bool,
num_iters: int,
**new_model_kwargs,
):
"""
(1) Runs a model with full world size for K iterations to generate a
full/sharded optimizer state dict;
(2) initializes a model with halved world size and possibly different
FSDP wrapping scheme (based on ``new_model_kwargs``);
(3) loads the full/sharded optimizer state dict from (1) according to the
halved-world-size model;
(4) runs the halved-world-size model for K iterations; and
(5) checks that the sharded optimizer state dict from (3) matches the
halved-world-size model's local optimizer state dict, meaning that the
former could have equivalently been loaded into the local optimizer.
"""
initializer = self._model_class[model_class]
if osd_comm_method == _OSDCommMethod.OPTIM_STATE_DICT:
osd_method = FSDP.optim_state_dict
elif osd_comm_method == _OSDCommMethod.FLATTEN_SHARDED_OSD:
osd_method = FSDP.sharded_optim_state_dict
else:
osd_method = FSDP.full_optim_state_dict
# First, run a wrapped model with full world size for a few iterations
model1, optim1, optim_input1 = initializer(
wrap=True,
use_multiple_param_groups=use_multiple_param_groups,
)
self._step_model(model1, optim1, num_iters=num_iters)
fsdp_osd1 = (
osd_method(model1, optim1, optim_input1)
if use_optim_input
else osd_method(model1, optim1)
)
if halve_world_size:
# Create a new process group with halved world size
new_group_ranks = [r for r in range(self.world_size) if r % 2 == 0]
new_group = dist.new_group(ranks=new_group_ranks)
if self.rank not in new_group_ranks:
return
else:
# Continue using the same group and hence world size
new_group = dist.distributed_c10d._get_default_group()
# Second, run a wrapped model with (possibly) halved world size and
# (possibly) differing `optim_input` across ranks
model2, optim2, optim_input2 = initializer(
wrap=True,
group=new_group,
use_multiple_param_groups=use_multiple_param_groups,
use_diff_optim_inputs=use_diff_optim_inputs,
**new_model_kwargs, # specify `wrap_alt` to change wrapping
)
self._step_model(model2, optim2, num_iters=num_iters)
fsdp_osd2 = (
osd_method(model2, optim2, optim_input2, group=new_group)
if use_optim_input
else osd_method(model2, optim2, group=new_group)
)
# Compute two sharded optim state dicts: (1) for the first model
# according to the second model and (2) for the second model according
# to the second model
if osd_comm_method == _OSDCommMethod.BROADCAST_OBJECT_LIST:
fsdp_osd1 = self._broadcast_full_osd(fsdp_osd1, group=new_group)
sharded_osd1 = (
FSDP.shard_full_optim_state_dict(
fsdp_osd1, model2, optim_input=optim_input2
)
if use_optim_input
else FSDP.shard_full_optim_state_dict(fsdp_osd1, model2, optim=optim2)
)
fsdp_osd2 = self._broadcast_full_osd(fsdp_osd2, group=new_group)
sharded_osd2 = (
FSDP.shard_full_optim_state_dict(
fsdp_osd2, model2, optim_input=optim_input2
)
if use_optim_input
else FSDP.shard_full_optim_state_dict(fsdp_osd2, model2, optim=optim2)
)
elif osd_comm_method == _OSDCommMethod.SCATTER_FULL_OSD:
sharded_osd1 = (
FSDP.scatter_full_optim_state_dict(
fsdp_osd1 if self.rank == 0 else None,
model2,
optim_input=optim_input2,
group=new_group,
)
if use_optim_input
else FSDP.scatter_full_optim_state_dict(
fsdp_osd1 if self.rank == 0 else None,
model2,
optim=optim2,
group=new_group,
)
)
sharded_osd2 = (
FSDP.scatter_full_optim_state_dict(
fsdp_osd2 if self.rank == 0 else None,
model2,
optim_input=optim_input2,
group=new_group,
)
if use_optim_input
else FSDP.scatter_full_optim_state_dict(
fsdp_osd2 if self.rank == 0 else None,
model2,
optim=optim2,
group=new_group,
)
)
elif osd_comm_method == _OSDCommMethod.FLATTEN_SHARDED_OSD:
sharded_osd1 = FSDP.flatten_sharded_optim_state_dict(
fsdp_osd1,
model2,
optim=optim2,
)
sharded_osd2 = FSDP.flatten_sharded_optim_state_dict(
fsdp_osd2,
model2,
optim=optim2,
)
elif osd_comm_method == _OSDCommMethod.OPTIM_STATE_DICT:
sharded_osd1 = FSDP.optim_state_dict_to_load(model2, optim2, fsdp_osd1)
sharded_osd2 = FSDP.optim_state_dict_to_load(model2, optim2, fsdp_osd2)
# As a sanity check, check that sharding the second model's full/sharded
# optimizer state dict according to itself is equivalent to its local
# optimizer's state dict
local_osd2 = optim2.state_dict()
check_same_param_keys = True # should all have matching parameter IDs
self._check_same_param_groups(
sharded_osd2,
local_osd2,
check_same_param_keys=check_same_param_keys,
)
self._check_same_state(
sharded_osd2,
local_osd2,
check_same_param_keys=check_same_param_keys,
)
# Check that sharding the first model's full/sharded optimizer state dict
# according to the second model is equivalent to the second model's
# local optimizer state dict
self._check_same_param_groups(
sharded_osd1,
local_osd2,
check_same_param_keys=check_same_param_keys,
)
self._check_same_state(
sharded_osd1,
local_osd2,
check_same_param_keys=check_same_param_keys,
)
# As a sanity check, check that we can load and run a few iterations
optim2.load_state_dict(sharded_osd2)
self._step_model(model2, optim2, num_iters=num_iters)
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", STATE_DICT_TYPES)
@parametrize("add_to_fsdp_module", [False, True])
def test_shard_full_optim_state_dict_unmanaged_params(
self,
state_dict_type: StateDictType,
add_to_fsdp_module: bool,
):
"""
Tests :meth:`shard_full_optim_state_dict` when there are unmanaged
parameters.
- If ``add_to_fsdp_module=True``, then the unmanaged parameters are
added to a module to be wrapped with FSDP, in which case there should
be an error since we require that all unflattened parameter
comprising a flat parameter have the same scalar state (e.g. Adam
"step") but the added parameter is missing its entry.
- If ``add_to_fsdp_module=False``, then the unmanaged parameters are
added to a module not to be wrapped with FSDP, in which case there
should be no error (emulating model parallel use cases where some
parameters may be managed externally to FSDP).
We do not separately test unmanaged parameters for
:meth:`scatter_full_optim_state_dict` and `flatten_sharded_optim_state_dict`
to save CI cost since it call into the same subroutine
:meth:`_flatten_optim_state_dict`.
"""
if state_dict_type == StateDictType.SHARDED_STATE_DICT:
use_optim_input = [False]
else:
use_optim_input = [False, True]
self.run_subtests(
{"use_optim_input": use_optim_input},
self._test_shard_full_optim_state_dict_unmanaged_params,
state_dict_type=state_dict_type,
add_to_fsdp_module=add_to_fsdp_module,
)
def _test_shard_full_optim_state_dict_unmanaged_params(
self,
state_dict_type: StateDictType,
add_to_fsdp_module: bool,
use_optim_input: bool,
):
NUM_ITERS = 1
# Create a normal wrapped model
model, optim, optim_input = self._init_nested_model(wrap=True)
self._step_model(model, optim, num_iters=NUM_ITERS)
if state_dict_type == StateDictType.FULL_STATE_DICT:
fsdp_osd = (
FSDP.full_optim_state_dict(model, optim, optim_input, rank0_only=False)
if use_optim_input
else FSDP.full_optim_state_dict(model, optim, rank0_only=False)
) # save on all ranks to avoid having to broadcast from rank 0
else:
fsdp_osd = FSDP.sharded_optim_state_dict(model, optim)
# Create a new model with the same structure but additional unmanaged
# parameters, representing the model for which we want to load
device = torch.device("cuda")
model = NestedModel().to(device)
model, unmanaged_params = NestedModel.wrap_with_unmanaged_params(
model,
add_to_fsdp_module,
)
optim_input = list(model.parameters())
optim = torch.optim.Adam(optim_input, lr=1e-3)
if add_to_fsdp_module:
# If we add the unmanaged parameters to a module wrapped with FSDP,
# then the flat parameter will be comprised of some unflattened
# parameters with zero-dimensional tensor state (i.e. Adam "step")
# and others without (i.e. the unmanaged parameters), which
# triggers an error that we have to ensure correctness
error_prefix = (
"^(All unflattened parameters comprising a "
"single flat parameter must have scalar state with the "
"same value and dtype)"
)
with self.assertRaisesRegex(ValueError, error_prefix):
if state_dict_type == StateDictType.FULL_STATE_DICT:
(
FSDP.shard_full_optim_state_dict(
fsdp_osd, model, optim_input=optim_input
)
if use_optim_input
else FSDP.shard_full_optim_state_dict(
fsdp_osd, model, optim=optim
)
)
else:
FSDP.flatten_sharded_optim_state_dict(fsdp_osd, model, optim=optim)
else:
# If we add the unmanaged parameters to a module not wrapped with
# FSDP, then we simply ignore them without erroring to enable
# model parallelism use cases, where some parameters are managed
# externally to FSDP
if state_dict_type == StateDictType.FULL_STATE_DICT:
flattened_osd = (
FSDP.shard_full_optim_state_dict(
fsdp_osd, model, optim_input=optim_input
)
if use_optim_input
else FSDP.shard_full_optim_state_dict(fsdp_osd, model, optim=optim)
)
else:
flattened_osd = FSDP.flatten_sharded_optim_state_dict(
fsdp_osd, model, optim=optim
)
# Add entries for the unmanaged parameters to be able to load
for unmanaged_param in unmanaged_params:
NestedModel.add_unmanaged_param_entry(
flattened_osd,
unmanaged_param,
NUM_ITERS,
)
# Check that we can load the optimizer state dict
optim.load_state_dict(flattened_osd)
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", STATE_DICT_TYPES)
@parametrize("use_multiple_param_groups", [False, True])
def test_rekey_optim_state_dict_to_ids(
self,
state_dict_type: StateDictType,
use_multiple_param_groups: bool,
):
"""Tests :meth:`rekey_optim_state_dict` with the new keys being
parameter IDs by checking that a wrapped model (i.e. with FSDP modules)
can rekey its optimizer state dict to match that of an equivalent
non-wrapped model (i.e. without FSDP modules)."""
if state_dict_type == StateDictType.SHARDED_STATE_DICT:
use_optim_input = [False]
else:
use_optim_input = [False, True]
self.run_subtests(
{"use_optim_input": use_optim_input},
self._test_rekey_optim_state_dict_to_ids,
state_dict_type=state_dict_type,
use_multiple_param_groups=use_multiple_param_groups,
)
@skip_if_lt_x_gpu(2)
def _test_rekey_optim_state_dict_to_ids(
self,
state_dict_type: StateDictType,
use_multiple_param_groups: bool,
use_optim_input: bool,
):
NUM_ITERS = 3
# Run a wrapped model for a few iterations
model1, optim1, optim_input1 = self._init_nested_model(
wrap=True,
use_multiple_param_groups=use_multiple_param_groups,
)
self._step_model(model1, optim1, num_iters=NUM_ITERS)
if state_dict_type == StateDictType.FULL_STATE_DICT:
fsdp_osd = (
FSDP.full_optim_state_dict(model1, optim1, optim_input1)
if use_optim_input
else FSDP.full_optim_state_dict(model1, optim1)
)
# Broadcast instead of `torch.save()`/`torch.load()` so that all ranks
# have the full state dict
fsdp_osd = self._broadcast_full_osd(fsdp_osd)
else:
fsdp_osd = FSDP.sharded_optim_state_dict(model1, optim1)
# Run a non-wrapped model for a few iterations
model2, optim2, optim_input2 = self._init_nested_model(
wrap=False,
use_multiple_param_groups=use_multiple_param_groups,
)
self._step_model(model2, optim2, num_iters=NUM_ITERS)
# Re-key the wrapped model's optimizer state dict using parameter IDs
# according to the non-wrapped model
rekeyed_osd = (
FSDP.rekey_optim_state_dict(
fsdp_osd,
OptimStateKeyType.PARAM_ID,
model2,
optim_input=optim_input2,
)
if use_optim_input
else FSDP.rekey_optim_state_dict(
fsdp_osd,
OptimStateKeyType.PARAM_ID,
model2,
optim=optim2,
)
)
# Check that the re-keyed dict and actual dict are the same
osd = optim2.state_dict()
check_same_param_keys = True
self._check_same_param_groups(
rekeyed_osd,
osd,
check_same_param_keys=check_same_param_keys,
)
self._check_same_state(
rekeyed_osd,
osd,
check_same_param_keys=check_same_param_keys,
)
# As a sanity check, check that we can load and run a few iterations
if state_dict_type != StateDictType.SHARDED_STATE_DICT:
optim2.load_state_dict(rekeyed_osd)
self._step_model(model2, optim2, num_iters=NUM_ITERS)
@skip_if_lt_x_gpu(2)
def test_rekey_optim_state_dict_to_names(self):
"""Tests :meth:`rekey_optim_state_dict` with the new keys being
parameter names by checking that a non-wrapped model (i.e. without FSDP
modules) can rekey its optimizer state dict to match the expected
output of :meth:`full_optim_state_dict`, hence be sharded using
:meth:`shard_full_optim_state_dict`, and finally match the per-rank
optimizer state dict of a wrapped model (i.e. with FSDP modules)."""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_rekey_optim_state_dict_to_names,
use_multiple_param_groups=False,
)
def _test_rekey_optim_state_dict_to_names(
self,
use_multiple_param_groups: bool,
use_optim_input: bool,
):
NUM_ITERS = 3
# Run a wrapped model for a few iterations
model1, optim1, optim_input1 = self._init_nested_model(
wrap=True,
use_multiple_param_groups=use_multiple_param_groups,
)
self._step_model(model1, optim1, num_iters=NUM_ITERS)
# Run a non-wrapped model for a few iterations
model2, optim2, optim_input2 = self._init_nested_model(
wrap=False,
use_multiple_param_groups=use_multiple_param_groups,
)
self._step_model(model2, optim2, num_iters=NUM_ITERS)
# Re-key the non-wrapped model's optimizer state dict using parameter
# names (still according to itself)
osd2 = optim2.state_dict()
rekeyed_osd = (
FSDP.rekey_optim_state_dict(
osd2,
OptimStateKeyType.PARAM_NAME,
model2,
optim_input=optim_input2,
)
if use_optim_input
else FSDP.rekey_optim_state_dict(
osd2,
OptimStateKeyType.PARAM_NAME,
model2,
optim=optim2,
)
)
# Shard the non-wrapped model's re-keyed optimizer state dict, which
# maps back to (flattened) parameter IDs
sharded_osd = (
FSDP.shard_full_optim_state_dict(
rekeyed_osd,
model1,
optim_input=optim_input1,
)
if use_optim_input
else FSDP.shard_full_optim_state_dict(
rekeyed_osd,
model1,
optim=optim1,
)
)
# Check that this sharded optimizer state dict matches the wrapped
# model's per-rank optimizer state dict
osd1 = optim1.state_dict()
check_same_param_keys = True
self._check_same_param_groups(
sharded_osd,
osd1,
check_same_param_keys=check_same_param_keys,
)
self._check_same_state(
sharded_osd,
osd1,
check_same_param_keys=check_same_param_keys,
)
# As a sanity check, check that we can load and run a few iterations
optim1.load_state_dict(sharded_osd)
self._step_model(model1, optim1, num_iters=NUM_ITERS)
@skip_if_lt_x_gpu(2)
def test_optim_input_warning(self):
"""Tests that passing the ``optim_input`` argument into optimizer state
checkpointing APIs issues a warning."""
def should_check_method(method_name: str):
# Check every method since they all accept `optim_input`
return method_name not in (
"sharded_optim_state_dict",
"flatten_sharded_optim_state_dict",
)
def get_warning_context():
warning_regex = "`optim_input` argument is deprecated"
return self.assertWarnsRegex(
expected_warning=FutureWarning, expected_regex=warning_regex
)
self._run_on_all_optim_state_apis(
should_check_method, get_warning_context, fsdp_kwargs=None
)
def _run_on_all_optim_state_apis(
self,
should_check_method_fn: Callable[[str], bool],
context_fn: Callable,
fsdp_kwargs: Optional[Dict[str, Any]],
):
"""
Runs through all optimizer state checkpointing APIs with a context
manager instantiated by ``context_fn``. Certain APIs can be skipped
via ``should_check_method_fn``, which gets passed the string name of
the method.
"""
wrapped_model, wrapped_optim, wrapped_optim_input = self._init_nested_model(
wrap=True,
use_multiple_param_groups=False,
fsdp_kwargs=fsdp_kwargs,
)
self._step_model(wrapped_model, wrapped_optim, num_iters=2)
# Sharded optim state dict
if should_check_method_fn("sharded_optim_state_dict"):
with context_fn():
fsdp_osd = FSDP.sharded_optim_state_dict(
wrapped_model,
wrapped_optim,
)
if "fsdp_osd" not in locals():
fsdp_osd = {} # may not be defined due to previous method erroring
if should_check_method_fn("flatten_sharded_optim_state_dict"):
with context_fn():
FSDP.flatten_sharded_optim_state_dict(
fsdp_osd,
wrapped_model,
wrapped_optim,
)
# Full optim state dict
if should_check_method_fn("full_optim_state_dict"):
with context_fn():
fsdp_osd = FSDP.full_optim_state_dict(
wrapped_model,
wrapped_optim,
optim_input=wrapped_optim_input,
rank0_only=False,
)
if should_check_method_fn("shard_full_optim_state_dict"):
with context_fn():
FSDP.shard_full_optim_state_dict(
fsdp_osd,
wrapped_model,
optim_input=wrapped_optim_input,
)
if should_check_method_fn("scatter_full_optim_state_dict"):
with context_fn():
FSDP.scatter_full_optim_state_dict(
fsdp_osd,
wrapped_model,
optim_input=wrapped_optim_input,
)
# Rekey optim state dict
(
nonwrapped_model,
nonwrapped_optim,
nonwrapped_optim_input,
) = self._init_nested_model(wrap=False, use_multiple_param_groups=False)
if should_check_method_fn("rekey_optim_state_dict"):
with context_fn():
rekeyed_osd = FSDP.rekey_optim_state_dict(
fsdp_osd, # from `full_optim_state_dict()`
OptimStateKeyType.PARAM_ID,
nonwrapped_model,
optim_input=nonwrapped_optim_input,
)
self._step_model(nonwrapped_model, nonwrapped_optim, num_iters=2)
osd = nonwrapped_optim.state_dict()
if should_check_method_fn("rekey_optim_state_dict"):
with context_fn():
FSDP.rekey_optim_state_dict(
osd,
OptimStateKeyType.PARAM_NAME,
nonwrapped_model,
optim_input=nonwrapped_optim_input,
)
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", STATE_DICT_TYPES)
def test_save_load_without_0th_param_state(self, state_dict_type: StateDictType):
"""
Tests saving and loading an optim state dict for Adam optimizer (i.e.
any optimizer with a "step" key in its state) when the first parameter
does not have optimizer state (e.g. unused or frozen).
"""
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.lin1 = nn.Linear(5, 5)
self.lin2 = nn.Linear(5, 5)
self.relu = nn.ReLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Do not use `lin1`, which is the parameter passed to the
# optimizer and the one checked for "step" state to see if it
# is tensor or float
return self.relu(self.lin2(x))
model = Model().cuda()
model.lin1 = FSDP(model.lin1)
model.lin2 = FSDP(model.lin2)
fsdp_model = FSDP(model)
optim = torch.optim.Adam(
fsdp_model.parameters(), lr=1e-2
) # or any optimizer with "step"
# Run an iteration to construct optimizer state
device = torch.device("cuda")
inp = torch.randn((2, 5), device=device)
loss = fsdp_model(inp).sum()
loss.backward()
optim.step()
# Check that save and load does not error
if state_dict_type == StateDictType.FULL_STATE_DICT:
fsdp_osd = FSDP.full_optim_state_dict(fsdp_model, optim, rank0_only=False)
flattened_osd = FSDP.shard_full_optim_state_dict(fsdp_osd, fsdp_model)
elif state_dict_type == StateDictType.SHARDED_STATE_DICT:
fsdp_osd = FSDP.sharded_optim_state_dict(fsdp_model, optim)
flattened_osd = FSDP.flatten_sharded_optim_state_dict(
fsdp_osd, fsdp_model, optim
)
optim.load_state_dict(flattened_osd)
# `__setstate__()` will check the 0th parameter to see if "step" is
# represented as a tensor or float, so it is imperative that its state
# is non-empty.
# Run an iteration as a sanity check
inp = torch.randn((2, 5), device=device)
loss = fsdp_model(inp).sum()
loss.backward()
optim.step()
@skip_if_lt_x_gpu(2)
def test_compatible_with_trec(self):
class DenseModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.net1 = nn.Sequential(nn.Linear(8, 16), nn.ReLU())
self.net2 = nn.Sequential(nn.Linear(16, 32), nn.ReLU())
self.net3 = nn.Linear(32, 64)
self.net4 = nn.Sequential(nn.ReLU(), nn.Linear(64, 8))
def forward(self, x):
return self.net4(self.net3(self.net2(self.net1(x))))
class FakeMPModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
torch.manual_seed(0)
self.dense = FSDP(DenseModel().cuda(), use_orig_params=True)
if dist.get_rank() == 0:
self.sparse0 = nn.Sequential(nn.Linear(8, 8), nn.ReLU())
else:
self.sparse1 = nn.Sequential(nn.Linear(8, 8), nn.ReLU())
def forward(self, x):
if dist.get_rank() == 0:
sparse = self.sparse0(x)
else:
sparse = self.sparse1(x)
dist.all_reduce(sparse)
return self.dense(sparse)
models = [FakeMPModel().cuda(), FakeMPModel().cuda()]
optims = [
torch.optim.Adam(models[0].parameters(), lr=1e-2),
_NamedOptimizer(
models[1].named_parameters(),
torch.optim.Adam,
[{"params": models[1].parameters()}],
models[1],
lr=1e-2,
),
]
state_dicts = []
# Train one batch and see if optim_state_dict are the same.
batch = torch.rand(5, 8, device=torch.device("cuda"))
for model, optim in zip(models, optims):
# Eagerly initialize the states
for param in model.parameters():
if param.requires_grad:
t = torch.zeros_like(param)
param.grad = torch.autograd.Variable(t)
optim.step()
loss = model(batch).sum()
loss.backward()
optim.step()
state_dicts.append(deepcopy(FSDP.optim_state_dict(model, optim)))
self._check_same_param_groups(
state_dicts[0], state_dicts[1], check_same_param_keys=False
)
self._check_same_state(
state_dicts[0], state_dicts[1], check_same_param_keys=True
)
# Make optim1 has a different state.
for i in range(5):
batch = torch.rand(5, 8).cuda()
loss = models[1](batch).sum()
loss.backward()
optims[1].step()
# Load the state back to see if load_optim_state_dict works.
state_dict_to_load = FSDP.optim_state_dict_to_load(
models[1], optims[1], state_dicts[1], is_named_optimizer=True
)
optims[1].load_state_dict(state_dict_to_load)
state_dicts[1] = FSDP.optim_state_dict(models[1], optims[1])
self._check_same_param_groups(
state_dicts[0], state_dicts[1], check_same_param_keys=False
)
self._check_same_state(
state_dicts[0], state_dicts[1], check_same_param_keys=True
)
@skip_if_lt_x_gpu(2)
def test_optim_state_without_param_groups(self):
class SimpleModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
torch.manual_seed(0)
self.net1 = nn.Sequential(nn.Linear(2, 4), nn.ReLU())
def forward(self, x):
return self.net1(x)
model = FSDP(SimpleModel().cuda())
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
# Train one step to save original optimizer state dict and original optimizer param groups.
batch = torch.rand(3, 2, device=torch.device("cuda"))
for param in model.parameters():
if param.requires_grad:
t = torch.zeros_like(param)
param.grad = torch.autograd.Variable(t)
optim.step()
loss = model(batch).sum()
loss.backward()
original_osd = deepcopy(optim.state_dict())
original_osd_no_param_groups = deepcopy(original_osd)
# manually remove param_groups from optimizer state dict
original_param_groups = deepcopy(
original_osd_no_param_groups.pop("param_groups")
)
# passing the osd without param_groups to FSDP
original_fsdp_optim_state_dict = deepcopy(
FSDP.optim_state_dict(
model, optim, optim_state_dict=original_osd_no_param_groups
)
)
# check the state_dict sharded by FSDP does not contain param_groups.
self.assertEqual(None, original_fsdp_optim_state_dict.get("param_groups"))
# train another step to make optim a different state.
for param in model.parameters():
if param.requires_grad:
t = torch.zeros_like(param)
param.grad = torch.autograd.Variable(t)
optim.step()
loss = model(batch).sum()
loss.backward()
state_dict_to_load = FSDP.optim_state_dict_to_load(
model, optim, original_fsdp_optim_state_dict
)
# manually add param_groups to state_dict_to_load before loading the optimizer state
state_dict_to_load["param_groups"] = original_param_groups
optim.load_state_dict(state_dict_to_load)
self.assertEqual(original_osd, optim.state_dict())
fsdp_optim_state = FSDP.optim_state_dict(model, optim)
self._check_same_state(
original_fsdp_optim_state_dict, fsdp_optim_state, check_same_param_keys=True
)
self.assertEqual(original_param_groups, optim.state_dict()["param_groups"])
@skip_if_lt_x_gpu(2)
def test_with_empty_optimizer_state(self):
model = FSDP(TestDummyModel().cuda())
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
state_dict = optim.state_dict()
gathered_state_dict = FSDP.optim_state_dict(model, optim)
self.assertEqual(gathered_state_dict["state"], state_dict["state"])
def _test_load_optim_state_with_optim_state_dict(
self,
model_class: _ModelClass,
state_dict_settings: StateDictSettings,
use_multiple_param_groups: bool,
halve_world_size: bool,
use_diff_optim_inputs: bool,
num_iters: int,
**new_model_kwargs,
):
"""
(1) Runs a model with full world size for K iterations to generate a
full/sharded optimizer state dict;
(2) initializes a model with halved world size and possibly different
FSDP wrapping scheme (based on ``new_model_kwargs``);
(3) loads the full/sharded optimizer state dict from (1) according to the
halved-world-size model;
(4) runs the halved-world-size model for K iterations; and
(5) checks that the sharded optimizer state dict from (3) matches the
halved-world-size model's local optimizer state dict, meaning that the
former could have equivalently been loaded into the local optimizer.
"""
initializer = self._model_class[model_class]
# First, run a wrapped model with full world size for a few iterations
model1, optim1, optim_input1 = initializer(
wrap=True,
use_multiple_param_groups=use_multiple_param_groups,
)
FSDP.set_state_dict_type(
model1,
state_dict_settings.state_dict_type,
state_dict_settings.state_dict_config,
state_dict_settings.optim_state_dict_config,
)
self._step_model(model1, optim1, num_iters=num_iters)
fsdp_osd1 = FSDP.optim_state_dict(model1, optim1)
if halve_world_size:
# Create a new process group with halved world size
new_group_ranks = [r for r in range(self.world_size) if r % 2 == 0]
new_group = dist.new_group(ranks=new_group_ranks)
if self.rank not in new_group_ranks:
return
else:
# Continue using the same group and hence world size
new_group = dist.distributed_c10d._get_default_group()
# Second, run a wrapped model with (possibly) halved world size and
# (possibly) differing `optim_input` across ranks
model2, optim2, optim_input2 = initializer(
wrap=True,
group=new_group,
use_multiple_param_groups=use_multiple_param_groups,
use_diff_optim_inputs=use_diff_optim_inputs,
**new_model_kwargs, # specify `wrap_alt` to change wrapping
)
FSDP.set_state_dict_type(
model2,
state_dict_settings.state_dict_type,
state_dict_settings.state_dict_config,
state_dict_settings.optim_state_dict_config,
)
self._step_model(model2, optim2, num_iters=num_iters)
fsdp_osd2 = FSDP.optim_state_dict(model2, optim2, group=new_group)
# Compute two sharded optim state dicts: (1) for the first model
# according to the second model and (2) for the second model according
# to the second model
sharded_osd2 = FSDP.optim_state_dict_to_load(
model2, optim2, fsdp_osd2, group=new_group
)
# As a sanity check, check that sharding the second model's full/sharded
# optimizer state dict according to itself is equivalent to its local
# optimizer's state dict
local_osd2 = optim2.state_dict()
self._check_same_param_groups(
sharded_osd2,
local_osd2,
check_same_param_keys=True,
)
self._check_same_state(
sharded_osd2,
local_osd2,
check_same_param_keys=True,
)
# Check that sharding the first model's full/sharded optimizer state dict
# according to the second model is equivalent to the second model's
# local optimizer state dict
sharded_osd1 = FSDP.optim_state_dict_to_load(
model2, optim2, fsdp_osd1, group=new_group
)
self._check_same_param_groups(
sharded_osd1,
local_osd2,
check_same_param_keys=True,
)
self._check_same_state(
sharded_osd1,
local_osd2,
check_same_param_keys=True,
)
# As a sanity check, check that we can load and run a few iterations
optim2.load_state_dict(sharded_osd2)
self._step_model(model2, optim2, num_iters=num_iters)
@skip_if_lt_x_gpu(2)
def test_interface_arguments(self):
model = FSDP(TestDummyModel().cuda())
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
def step():
loss = model(model.get_input())
loss.backward(loss)
optim.step()
step()
original_osd = deepcopy(optim.state_dict())
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
self._check_same_state(
FSDP.optim_state_dict(model, optim), osd, check_same_param_keys=True
)
step()
osd_to_load = FSDP.optim_state_dict_to_load(
model, optim, osd, load_directly=True
)
self._check_same_state(
optim.state_dict(), original_osd, check_same_param_keys=True
)
# Test the default setting.
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
for state in osd["state"].values():
for s in state.values():
self.assertFalse(isinstance(s, ShardedTensor))
self.assertFalse(s.is_cuda)
# Test sharded state_dict without offload_to_cpu
with FSDP.state_dict_type(
model,
StateDictType.SHARDED_STATE_DICT,
ShardedStateDictConfig(),
ShardedOptimStateDictConfig(offload_to_cpu=False),
):
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
for state in osd["state"].values():
for s in state.values():
if s.dim() == 0:
continue
self.assertTrue(isinstance(s, ShardedTensor))
if s._local_shards[0]:
self.assertTrue(s._local_shards[0].tensor.is_cuda)
# Test full state_dict with rank0_only
with FSDP.state_dict_type(
model,
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(),
FullOptimStateDictConfig(
offload_to_cpu=True,
rank0_only=True,
),
):
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
if dist.get_rank() > 0:
self.assertEqual(osd, {})
else:
for state in osd["state"].values():
for s in state.values():
if s.dim() == 0:
continue
self.assertFalse(s.is_cuda)
self.assertFalse(isinstance(s, ShardedTensor))
@skip_if_lt_x_gpu(2)
def test_state_dict_with_none_tensor_state(self):
def _run_test(use_orig_params, optimizer_has_tensor_state):
model = FSDP(TestDummyModel().cuda(), use_orig_params=use_orig_params)
optimizer_cls = (
torch.optim.Adam if optimizer_has_tensor_state else torch.optim.SGD
)
optim = optimizer_cls(model.parameters(), lr=1e-2)
def step():
loss = model(model.get_input())
loss.backward(loss)
optim.step()
step()
original_osd = deepcopy(optim.state_dict())
for state in original_osd["state"].values():
# Add customized value
state["value1"] = 2.74
state["value2"] = None
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
osd_to_load = FSDP.optim_state_dict_to_load(model, optim, osd)
for state in osd_to_load["state"].values():
self.assertEqual(state["value1"], 2.74)
self.assertEqual(state["value2"], None)
self.run_subtests(
{
"use_orig_params": [False, True],
"optimizer_has_tensor_state": [False, True],
},
_run_test,
)
@skip_if_lt_x_gpu(2)
def test_with_no_shard(self):
def _run_test(use_orig_params: bool) -> None:
model = FSDP(
TestDummyModel().cuda(),
sharding_strategy=ShardingStrategy.NO_SHARD,
use_orig_params=use_orig_params,
)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
def step():
loss = model(model.get_input())
loss.backward(loss)
optim.step()
step()
original_osd = deepcopy(optim.state_dict())
osd = FSDP.optim_state_dict(model, optim)
osd_to_load = FSDP.optim_state_dict_to_load(model, optim, osd)
optim.load_state_dict(osd_to_load)
new_osd = optim.state_dict()
self.assertEqual(original_osd, new_osd)
self.run_subtests({"use_orig_params": [False, True]}, _run_test)
@skip_if_lt_x_gpu(2)
def test_no_grad(self):
model = TestDummyModel(no_grad=True).cuda()
fsdp_model = FSDP(deepcopy(model), use_orig_params=True)
fsdp_optim = torch.optim.Adam(fsdp_model.parameters(), lr=1e-2)
for i in range(5):
if i % 2 == 1:
fsdp_model.net1[0].weight.requires_grad = True
fsdp_model.net1[0].bias.requires_grad = True
else:
fsdp_model.net1[0].weight.requires_grad = False
fsdp_model.net1[0].bias.requires_grad = False
batch = fsdp_model.get_input()
loss = fsdp_model(batch).sum()
loss.backward()
fsdp_optim.step()
orig_state_dict = deepcopy(fsdp_optim.state_dict())
optim_state_dict = FSDP.optim_state_dict(fsdp_model, fsdp_optim)
FSDP.optim_state_dict_to_load(
fsdp_model,
fsdp_optim,
FSDP.optim_state_dict(fsdp_model, fsdp_optim),
load_directly=True,
)
self._check_same_state(
fsdp_optim.state_dict(),
orig_state_dict,
check_same_param_keys=True,
)
instantiate_parametrized_tests(TestFSDPOptimState)
if __name__ == "__main__":
run_tests()
|