File: test_fsdp_tp_integration.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (472 lines) | stat: -rw-r--r-- 17,538 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# Owner(s): ["oncall: distributed"]
import copy
import sys
from collections import OrderedDict
from typing import Dict, List, Optional, Tuple

import torch
from torch import distributed as dist
from torch.distributed._tensor import (
    DeviceMesh,
    distribute_module,
    DTensor,
    init_device_mesh,
    Replicate,
    Shard,
)
from torch.distributed.fsdp.fully_sharded_data_parallel import (
    CPUOffload,
    FullyShardedDataParallel as FSDP,
    ShardingStrategy,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import (
    ColwiseParallel,
    parallelize_module,
    RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    run_tests,
    TEST_WITH_DEV_DBG_ASAN,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
    MLPModule,
    RMSNormPython,
)


if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)

if TEST_WITH_DEV_DBG_ASAN:
    print(
        "Skip dev-asan as torch + multiprocessing spawn have known issues",
        file=sys.stderr,
    )
    sys.exit(0)


class SimpleModel(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.net1 = torch.nn.Linear(5, 8)
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(8, 4)
        self.net3 = torch.nn.Linear(4, 12)

    def forward(self, x):
        return self.net3(self.net2(self.relu(self.net1(x))))

    @staticmethod
    def get_sharded_param_names() -> List[str]:
        return ["net1.weight", "net1.bias", "net2.weight"]

    @staticmethod
    def get_non_sharded_param_names() -> List[str]:
        return ["net3.weight", "net3.bias"]


def distribute_rmsnorm(module, device_mesh):
    def prepare_input_fn(mod, inputs, device_mesh):
        shard_tensor = DTensor.from_local(inputs[0], device_mesh, [Shard(0)])
        return shard_tensor

    def prepare_output_fn(mod, outputs, device_mesh):
        return outputs.to_local()

    return distribute_module(
        module, device_mesh, input_fn=prepare_input_fn, output_fn=prepare_output_fn
    )


class TestTPFSDPIntegration(FSDPTest):
    def _get_params_and_sharding_info(
        self,
        model: SimpleModel,
        sharded_param_names: List[str],
        tensor_parallel_size: int,
    ) -> Tuple[Dict[str, int], Dict[str, Tuple[torch.Size, int]]]:
        """ """
        assert (
            type(model) is SimpleModel
        ), "Expects a `SimpleModel` since the sharding cases on the model definition"
        param_name_to_numel = OrderedDict()
        param_name_to_sharding_info = OrderedDict()
        for param_name, param in model.named_parameters():
            if param_name not in sharded_param_names:
                param_name_to_numel[param_name] = param.numel()
            else:
                param_name_to_numel[param_name] = param.numel() // tensor_parallel_size
                param_name_to_sharding_info[param_name] = (
                    param.size(),
                    0 if "net1" in param_name else 1,
                )
        return param_name_to_numel, param_name_to_sharding_info

    def _get_sub_pgs(self, tensor_parallel_size: int):
        """
        Generates TP and FSDP subprocess groups. ``tensor_parallel_size`` gives
        the TP process group size.

        For example, if the global world size is 8 and the tensor parallel size
        is 2, then this creates:
        - 4 TP subprocess groups: [0, 1], [2, 3], [4, 5], [6, 7]
        - 2 FSDP subprocess groups: [0, 2, 4, 6], [1, 3, 5, 7]
        """
        # 2-D mesh is [dp, tp]
        twod_mesh = DeviceMesh(
            device_type="cuda",
            mesh=torch.arange(0, self.world_size).view(-1, tensor_parallel_size),
        )

        fsdp_pg = twod_mesh.get_group(mesh_dim=0)
        tp_pg = twod_mesh.get_group(mesh_dim=1)
        return twod_mesh, fsdp_pg, tp_pg

    def _sync_tp_grads(
        self,
        tp_fsdp_model: FSDP,
        tp_pg: dist.ProcessGroup,
        param_name_to_numel: Dict[str, int],
        non_sharded_param_names: List[str],
    ) -> None:
        """
        Syncs the tensor parallel parameters' gradients following the data
        parallel paradigm where gradients are averaged over ranks (in this
        case, the ones in the tensor parallel process group).
        """
        tp_world_size = tp_pg.size()
        fsdp_world_size = self.world_size // tp_world_size
        assert (
            type(tp_fsdp_model) is FSDP
            and len([m for m in tp_fsdp_model.modules() if type(m) is FSDP]) == 1
        ), (
            "The following logic assumes a single top-level-only FSDP wrapping "
            "the model with TP already applied"
        )
        for flat_param in tp_fsdp_model.params:
            splits = tuple(param_name_to_numel.values())
            # Create a mask over the gradient elements to manually reduce
            unsharded_size = torch.Size([flat_param.numel() * fsdp_world_size])
            unsharded_zeros = torch.zeros(unsharded_size, device=flat_param.device)
            per_param_masks = unsharded_zeros.split(splits)
            for param_idx, param_name in enumerate(
                param_name_to_numel.keys()
            ):  # assumes fixed order
                if param_name not in non_sharded_param_names:
                    per_param_masks[param_idx][:] = 1
            unsharded_mask = (
                torch.cat(per_param_masks).contiguous().type(torch.BoolTensor)
            )
            sharded_mask = unsharded_mask.chunk(fsdp_world_size)[
                self.rank // tp_world_size
            ]
            grad_device = flat_param.grad.device
            grad = flat_param.grad.detach().clone().cuda(self.rank)
            dist.all_reduce(grad, op=dist.ReduceOp.SUM, group=tp_pg)
            grad = grad.to(grad_device)
            flat_param.grad[~sharded_mask] = grad[~sharded_mask]
            # Average *all* gradient elements to match the FSDP only semantics
            flat_param.grad /= tp_world_size

    def _get_grads_as_flattened(
        self,
        model: FSDP,
        uses_tp: bool,
        param_name_to_numel: Dict[str, int],
        param_name_to_sharding_info: Dict[str, Tuple[torch.Size, int]],
        tp_pg: Optional[dist.ProcessGroup],
        fsdp_pg: Optional[dist.ProcessGroup],
        sharded_param_names: Optional[List[str]],
    ) -> torch.Tensor:
        """
        Returns all unsharded gradients as a single flattened tensor. This
        returns the same value on all ranks.
        """
        local_grads_as_flattened = (
            torch.cat(
                [
                    torch.flatten(param.grad)
                    if param.grad is not None
                    else torch.zeros_like(torch.flatten(param))
                    for param in model.parameters()
                ]
            )
            .contiguous()
            .cuda(self.rank)
        )
        all_grads_as_flattened = torch.cat(
            [torch.empty_like(local_grads_as_flattened) for _ in range(fsdp_pg.size())]
        ).contiguous()
        dist.all_gather_into_tensor(
            all_grads_as_flattened, local_grads_as_flattened, group=fsdp_pg
        )
        if not uses_tp:
            return all_grads_as_flattened
        splits = tuple(param_name_to_numel.values())
        all_grads_per_param = list(all_grads_as_flattened.split(splits))
        for param_idx, param_name in enumerate(
            param_name_to_numel.keys()
        ):  # assumes fixed order
            if param_name in sharded_param_names:
                local_tensor_size = list(param_name_to_sharding_info[param_name][0])
                sharding_dim = param_name_to_sharding_info[param_name][1]
                local_tensor_size[sharding_dim] //= tp_pg.size()
                local_tensor = all_grads_per_param[param_idx].view(*local_tensor_size)
                local_tensors = [
                    torch.empty_like(local_tensor) for _ in range(tp_pg.size())
                ]
                dist.all_gather(local_tensors, local_tensor, group=tp_pg)
                all_grads_per_param[param_idx] = torch.cat(
                    local_tensors, dim=sharding_dim
                ).reshape(-1)
        return torch.cat(all_grads_per_param).contiguous()

    @skip_if_lt_x_gpu(4)
    def test_fsdp_tp_integration(self):
        self.run_subtests(
            {
                "cpu_offload": [
                    CPUOffload(offload_params=False),
                    CPUOffload(offload_params=True),
                ],
                "sharding_strategy": [None, ShardingStrategy.SHARD_GRAD_OP],
                "use_orig_params": [False, True],
            },
            self._test_fsdp_tp_integration,
        )

    def _test_fsdp_tp_integration(
        self, cpu_offload, sharding_strategy, use_orig_params
    ):
        """
        Tests training for TP + FSDP integration by comparing an FSDP-only
        model with a TP + FSDP model.
        """
        tensor_parallel_size = 2
        LR = 3e-5
        torch.manual_seed(0)
        model = SimpleModel().cuda(self.rank)
        tp_fsdp_model = copy.deepcopy(model)
        sharded_param_names = SimpleModel.get_sharded_param_names()
        non_sharded_param_names = SimpleModel.get_non_sharded_param_names()
        (
            param_name_to_numel,
            param_name_to_sharding_info,
        ) = self._get_params_and_sharding_info(
            model,
            sharded_param_names,
            tensor_parallel_size,
        )

        input_seed = self.rank
        torch.manual_seed(input_seed + 1)
        inp_size = [2, 3, 5]
        inp = torch.rand(*inp_size).cuda(self.rank)
        self.assertEqual(model(inp), tp_fsdp_model(inp))  # sanity check

        mesh_1d = init_device_mesh("cuda", (self.world_size,))
        fsdp_model = FSDP(
            model,
            cpu_offload=cpu_offload,
            device_mesh=mesh_1d,
            sharding_strategy=sharding_strategy,
            use_orig_params=use_orig_params,
        )
        mesh_2d = init_device_mesh(
            "cuda",
            (self.world_size // tensor_parallel_size, tensor_parallel_size),
            mesh_dim_names=["dp", "tp"],
        )
        # Shard with TP and then wrap with FSDP
        sequence_parallelize_plan = {
            "net1": ColwiseParallel(input_layouts=Shard(0)),
            "net2": RowwiseParallel(output_layouts=Shard(0)),
        }
        tp_fsdp_model = parallelize_module(
            tp_fsdp_model,
            mesh_2d["tp"],
            sequence_parallelize_plan,
        )
        tp_pg = mesh_2d["tp"].get_group(mesh_dim=0)
        assert isinstance(tp_fsdp_model.net1.weight, DTensor)
        assert isinstance(tp_fsdp_model.net2.weight, DTensor)
        tp_fsdp_model = FSDP(
            tp_fsdp_model,
            cpu_offload=cpu_offload,
            device_mesh=mesh_2d["dp"],
            sharding_strategy=sharding_strategy,
            use_orig_params=use_orig_params,
        )
        fsdp_pg = mesh_2d["dp"].get_group(mesh_dim=0)

        # Check the forward by checking output equality
        fsdp_out = fsdp_model(inp)
        tp_fsdp_out = tp_fsdp_model(inp)
        self.assertEqual(fsdp_out, tp_fsdp_out)

        # Check the backward by checking gradient equality
        fsdp_out.sum().backward()
        tp_fsdp_out.sum().backward()
        self._sync_tp_grads(
            tp_fsdp_model,
            tp_pg,
            param_name_to_numel,
            non_sharded_param_names,
        )
        model_grads = self._get_grads_as_flattened(
            fsdp_model,
            False,
            param_name_to_numel,
            param_name_to_sharding_info,
            None,
            self.process_group,
            None,
        )
        model_tp_grads = self._get_grads_as_flattened(
            tp_fsdp_model,
            True,
            param_name_to_numel,
            param_name_to_sharding_info,
            tp_pg,
            fsdp_pg,
            sharded_param_names,
        )
        self.assertEqual(model_grads, model_tp_grads)

        # Check the optimizer step by performing a second forward pass
        fsdp_optim = torch.optim.SGD(fsdp_model.parameters(), lr=LR)
        tp_fsdp_optim = torch.optim.SGD(tp_fsdp_model.parameters(), lr=LR)
        fsdp_optim.step()
        tp_fsdp_optim.step()
        torch.manual_seed(input_seed + 16)
        inp = torch.rand(*inp_size).cuda(self.rank)
        fsdp_out = fsdp_model(inp)
        tp_fsdp_out = tp_fsdp_model(inp)
        self.assertEqual(fsdp_out, tp_fsdp_out)

    @skip_if_lt_x_gpu(4)
    def test_fsdp_tp_extension_grad(self):
        """
        Tests TP + FSDP extension with correct gradient (i.e. no ACT)
        """
        mesh_2d = init_device_mesh(
            "cuda", (self.world_size // 2, 2), mesh_dim_names=["dp", "tp"]
        )

        class TestModel(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.mlp = MLPModule("cuda")
                self.mlp_norm = RMSNormPython(10)

            def forward(self, x):
                return self.mlp(self.mlp_norm(x))

        model = TestModel().cuda(self.rank)

        # Shard with TP and test gradient
        tp_mesh = mesh_2d["tp"]
        tp_model = parallelize_module(
            model,
            tp_mesh,
            {
                "mlp.net1": ColwiseParallel(input_layouts=Shard(0)),
                "mlp.net2": RowwiseParallel(output_layouts=Shard(0)),
            },
        )
        distribute_rmsnorm(tp_model.mlp_norm, tp_mesh)

        fsdp_2d_model = FSDP(tp_model, device_mesh=mesh_2d["dp"])
        comm_mode = CommDebugMode()

        with comm_mode:
            fsdp_2d_model(torch.rand(2, 10).cuda(self.rank)).sum().backward()

        funcol = torch.ops.c10d_functional
        c10d_ops = torch.ops.c10d
        comm_counts = comm_mode.get_comm_counts()
        self.assertEqual(comm_mode.get_total_counts(), 7)
        # TP comms
        self.assertEqual(comm_counts[funcol.reduce_scatter_tensor], 2)
        self.assertEqual(comm_counts[funcol.all_gather_into_tensor], 2)
        self.assertEqual(comm_counts[funcol.all_reduce], 1)
        # FSDP comms
        self.assertEqual(comm_counts[c10d_ops._allgather_base_], 1)
        self.assertEqual(comm_counts[c10d_ops._reduce_scatter_base_], 1)

        grads = [p.grad for p in fsdp_2d_model.parameters() if p.grad is not None]

        for grad in grads:
            self.assertFalse(grad.isnan().any().item())

    @skip_if_lt_x_gpu(4)
    def test_fsdp_tp_sync_module_state(self):
        mesh_2d = init_device_mesh(
            "cuda", (self.world_size // 2, 2), mesh_dim_names=["dp", "tp"]
        )
        tp_mesh = mesh_2d["tp"]
        dp_mesh = mesh_2d["dp"]

        # set random seed for each rank
        torch.manual_seed(mesh_2d.get_rank())

        class TestModel(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                replicated_dt = DTensor.from_local(
                    torch.randn(8, 8), tp_mesh, [Replicate()], run_check=False
                )
                replicated_buffer_dt = DTensor.from_local(
                    torch.randn(8, 8), tp_mesh, [Replicate()], run_check=False
                )
                self.param = torch.nn.Parameter(replicated_dt)
                self.buf = torch.nn.Buffer(replicated_buffer_dt)

            def forward(self, x):
                return self.param + self.buffer + 1

        model = TestModel()

        def assert_local_shard_across_ranks(local_tensor, group, check_equal=True):
            gathered_tensors = [
                torch.empty_like(local_tensor) for _ in range(group.size())
            ]
            dist.all_gather(gathered_tensors, local_tensor, group=group)
            # on dp mesh dim local tensor does not equal
            tensor_to_compare = gathered_tensors[0]
            for tensor in gathered_tensors[1:]:
                if check_equal:
                    self.assertTrue(torch.equal(tensor, tensor_to_compare))
                else:
                    self.assertFalse(torch.equal(tensor, tensor_to_compare))

        dp_group = dp_mesh.get_group()

        # check on dp mesh dim param local tensor does not equal
        local_param = model.param.to_local()
        assert_local_shard_across_ranks(local_param, dp_group, check_equal=False)
        # check on dp mesh dim buffer local tensor does not equal
        local_buf = model.buf.to_local()
        assert_local_shard_across_ranks(local_buf, dp_group, check_equal=False)

        # wrap with fsdp sync param should sync dp mesh dim
        fsdp_mod = FSDP(model, device_mesh=dp_mesh, sync_module_states=True)
        with fsdp_mod.summon_full_params(fsdp_mod):
            # on dp mesh dim local param does equal after sync_module_states
            local_param = fsdp_mod.param.to_local()
            assert_local_shard_across_ranks(local_param, dp_group, check_equal=True)

            # on dp mesh dim local buf does equal after sync_module_states
            local_buf = fsdp_mod.buf.to_local()
            assert_local_shard_across_ranks(local_buf, dp_group, check_equal=True)


instantiate_parametrized_tests(TestTPFSDPIntegration)

if __name__ == "__main__":
    run_tests()