1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
|
# Owner(s): ["oncall: distributed"]
import contextlib
import itertools
import math
import sys
from typing import Any, Dict, List, Optional, Union
import torch
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp._flat_param import FlatParameter
from torch.distributed.fsdp.fully_sharded_data_parallel import FLAT_PARAM
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
DEVICEInitMode,
FSDPInitMode,
FSDPTest,
get_devtype,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
device_type = torch.device(get_devtype())
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
class TestUnshardParamsBase(FSDPTest):
"""
This contains any methods common to both the sharded and non-sharded cases.
"""
def _test_unshard_params_writeback(
self,
writeback: bool,
check_outer: bool,
**fsdp_kwargs: Dict[str, Any],
):
model = nn.Sequential(
nn.Linear(5, 5, bias=False, device=device_type.type),
nn.Linear(5, 3, bias=False, device=device_type.type),
)
model[0] = FSDP(model[0], **fsdp_kwargs)
model = FSDP(model, **fsdp_kwargs)
uses_sharded_strategy = model.sharding_strategy != ShardingStrategy.NO_SHARD
offloading_params = model.cpu_offload.offload_params
# Assumes depth-first `.parameters()`
outer_param: Union[FlatParameter, nn.Parameter] = next(model.parameters())
inner_param: Union[FlatParameter, nn.Parameter] = next(model[0].parameters())
param_to_check = outer_param if check_outer else inner_param
# Write a known value to all elements of the *sharded* parameter or
# `FlatParameter` to check
with torch.no_grad():
param_to_check.zero_()
param_to_check += self.rank + 2
# Zero the *unsharded* parameters
with FSDP.summon_full_params(model, writeback=writeback), torch.no_grad():
for param in model.parameters():
param.zero_()
# Check the 0th singleton element of the sharded parameter to see if
# the zeroing from inside the context persists
param_elem_to_check = param_to_check[0]
if param_elem_to_check.numel() > 1:
# For `use_orig_params=True` and `NO_SHARD`, the parameter
# preserves the original 2D shape, so we must access one more time
param_elem_to_check = param_elem_to_check[0]
if writeback or (not uses_sharded_strategy and not offloading_params):
# When FSDP does not use a sharded strategy and is not offloading
# parameters to CPU, it directly exposes the tensor storage that
# serves as the unsharded source of truth, so the write is always
# reflected regardless of `writeback`.
self.assertEqual(param_elem_to_check, 0)
else:
self.assertEqual(param_elem_to_check, self.rank + 2)
if offloading_params:
cpu_device = torch.device("cpu")
for param in model.parameters():
self.assertEqual(param.device, cpu_device)
def _get_test_unshard_params_writeback_config(self) -> Dict[str, List[Any]]:
return {
"writeback": [True, False],
"check_outer": [True, False],
"mixed_precision": [MixedPrecision(param_dtype=torch.float16), None],
"cpu_offload": [
CPUOffload(offload_params=False),
CPUOffload(offload_params=True),
],
"use_orig_params": [True, False],
}
def _test_unshard_params_param_data(
self,
rank0_only: bool,
offload_to_cpu: bool,
cpu_offload: CPUOffload,
mixed_precision: Optional[MixedPrecision],
use_orig_params: bool,
):
local_model = NestedWrappedModule.init(
self.process_group,
FSDPInitMode.NO_FSDP,
DEVICEInitMode.DEVICE_BEFORE,
fsdp_kwargs={"device_id": device_type.type},
deterministic=True,
)
# Apply FSDP such that the root module does not have FSDP applied,
# while there are multiple FSDP root submodules (as proven later)
fsdp_model = NestedWrappedModule.init(
self.process_group,
FSDPInitMode.RECURSIVE,
DEVICEInitMode.DEVICE_BEFORE,
fsdp_kwargs={
"cpu_offload": cpu_offload,
"mixed_precision": mixed_precision,
"use_orig_params": use_orig_params,
},
deterministic=True,
)
self.assertFalse(isinstance(fsdp_model, FSDP))
# Hard code the following names because getting them is non-trivial
non_fsdp_managed_param_names = {
"module.0.weight",
"module.0.bias",
"module.3.weight",
"module.3.bias",
}
with FSDP.summon_full_params(
fsdp_model,
rank0_only=rank0_only,
writeback=not rank0_only,
offload_to_cpu=offload_to_cpu,
):
if not rank0_only or self.rank == 0:
for p1, (n2, p2) in zip(
local_model.parameters(), fsdp_model.named_parameters()
):
self.assertEqual(p1.shape, p2.shape)
if (
offload_to_cpu
and clean_tensor_name(n2) not in non_fsdp_managed_param_names
):
self.assertEqual(torch.device("cpu"), p2.device)
else:
self.assertEqual(p1.device, p2.device)
self.assertEqual(
p1.dtype, p2.dtype
) # even if FSDP uses mixed precision
self.assertEqual(p1, p2)
self.assertTrue(isinstance(p2, nn.Parameter))
else:
# Check that each `FlatParameter` has the sharded size as a
# proxy for it being resharded
for handle in traversal_utils._get_fsdp_handles(fsdp_model):
if handle.uses_sharded_strategy:
self.assertEqual(
handle.flat_param.shape, handle.flat_param._sharded_size
)
else:
self.assertEqual(
handle.flat_param.shape,
handle.flat_param._unpadded_unsharded_size,
)
# Prove the number of FSDP roots after lazy initialization
num_fsdp_roots = 0
for fsdp_state in traversal_utils._get_fsdp_states(fsdp_model):
num_fsdp_roots += fsdp_state._is_root
self.assertGreater(num_fsdp_roots, 1)
def _get_test_unshard_params_param_data_config(self) -> Dict[str, List[Any]]:
return {
"rank0_only": [False, True],
"offload_to_cpu": [False, True],
"cpu_offload": [
CPUOffload(offload_params=False),
CPUOffload(offload_params=True),
],
"mixed_precision": [MixedPrecision(param_dtype=torch.float16), None],
"use_orig_params": [True, False],
}
class TestUnshardParams(TestUnshardParamsBase):
@property
def world_size(self) -> int:
return 2
@skip_if_lt_x_gpu(2)
def test_unshard_params_writeback(self):
"""Tests the ``writeback`` argument (using default for all others)."""
self.run_subtests(
self._get_test_unshard_params_writeback_config(),
self._test_unshard_params_writeback,
)
@skip_if_lt_x_gpu(2)
def test_unshard_params_param_data(self):
"""
Tests that parameters are exposed correctly for ``recurse=True`` and
all other argument configs for a non-FSDP root module.
"""
self.run_subtests(
self._get_test_unshard_params_param_data_config(),
self._test_unshard_params_param_data,
)
@skip_if_lt_x_gpu(2)
def test_unshard_singleton_param_writeback(self):
"""
Tests ``writeback=True`` for a singleton parameter, which includes
testing that writing to padding does not persist.
NOTE: This method depends on FSDP internals.
"""
model = FSDP(nn.Linear(1, 1, bias=False, device=device_type.type))
flat_param = model._handle.flat_param
self.assertEqual(1, flat_param.numel())
# Write a known value to the *sharded* `FlatParameter`
with torch.no_grad():
# For nonzero ranks, this write is to padding
flat_param[0] = self.rank + 2
with FSDP.summon_full_params(model, writeback=True):
self.assertEqual(1, flat_param.numel())
with torch.no_grad():
flat_param.zero_()
# NOTE: This checks that writes to padding did not persist, which is
# *not* strictly required for correctness.
if self.rank == 0: # did not write to padding
self.assertEqual(0, flat_param[0])
else: # wrote to padding
self.assertEqual(self.rank + 2, flat_param[0])
@skip_if_lt_x_gpu(2)
def test_unshard_params_respects_reshard(self):
"""
Tests that unsharding parameters respects the expected reshard behavior
between forward and backward as well as after backward.
For mixed precision, we should *not* respect the reshard behavior
because the ``summon_full_params()`` forces full precision, which uses
a different all-gather tensor than the one already in memory and will
not persist any modifications correctly.
"""
self.run_subtests(
{
"rank0_only": [False, True],
"offload_to_cpu": [False, True],
"mixed_precision": [MixedPrecision(param_dtype=torch.float16), None],
"use_orig_params": [False, True],
},
self._test_unshard_params_respects_reshard,
)
def _test_unshard_params_respects_reshard(
self,
rank0_only: bool,
offload_to_cpu: bool,
mixed_precision: Optional[MixedPrecision],
use_orig_params: bool,
):
"""NOTE: This method depends on FSDP internals."""
fsdp_kwargs = {
"mixed_precision": mixed_precision,
"use_orig_params": use_orig_params,
}
model = FSDP(
nn.Sequential(
FSDP(
nn.Linear(5, 5, bias=False, device=device_type.type), **fsdp_kwargs
),
nn.Linear(5, 3, bias=False, device=device_type.type),
),
**fsdp_kwargs,
)
outer_flat_param = model._handle.flat_param
inner_flat_param = model.module[0]._handle.flat_param
# NOTE: This assumes uniform sharding with padding across ranks.
expected_outer_flat_param_unsharded_numel = (
outer_flat_param.numel() * self.world_size
)
def _get_unsharded_storage_size(flat_param: FlatParameter):
return flat_param._full_param_padded.storage().size()
# Validate the expected behavior: the root does not reshard after
# forward; the non-root reshards after forward; and both reshard after
# backward
output = model(torch.zeros(5, device=device_type.type))
self.assertEqual(
expected_outer_flat_param_unsharded_numel,
_get_unsharded_storage_size(outer_flat_param),
)
self.assertEqual(0, _get_unsharded_storage_size(inner_flat_param))
output.sum().backward()
self.assertEqual(0, _get_unsharded_storage_size(outer_flat_param))
self.assertEqual(0, _get_unsharded_storage_size(inner_flat_param))
# Check that with parameter unsharding in between forward and backward
# as well as after backward, the reshard behavior matches
output = model(torch.zeros(5, device=device_type.type))
with FSDP.summon_full_params(
model,
rank0_only=rank0_only,
writeback=not rank0_only,
offload_to_cpu=offload_to_cpu,
):
pass
if mixed_precision is not None:
# After forcing full precision, we must invalidate the existing
# unsharded low-precision flat parameter since it will not persist
# changes from the `summon_full_params()` context, so we cannot
# respect the reshard behavior
expected_outer_flat_param_unsharded_numel = 0
self.assertEqual(
expected_outer_flat_param_unsharded_numel,
_get_unsharded_storage_size(outer_flat_param),
)
self.assertEqual(0, _get_unsharded_storage_size(inner_flat_param))
output.sum().backward()
with FSDP.summon_full_params(
model,
rank0_only=rank0_only,
writeback=not rank0_only,
offload_to_cpu=offload_to_cpu,
):
pass
self.assertEqual(0, _get_unsharded_storage_size(outer_flat_param))
self.assertEqual(0, _get_unsharded_storage_size(inner_flat_param))
@skip_if_lt_x_gpu(2)
def test_unshard_params_recurse(self):
"""Tests the ``recurse`` argument (using default for all others)."""
self.run_subtests(
{
"recurse": [False, True],
"unshard_outer": [False, True],
"mixed_precision": [MixedPrecision(param_dtype=torch.float16), None],
"use_orig_params": [False, True],
},
self._test_unshard_params_recurse,
)
def _test_unshard_params_recurse(
self,
recurse: bool,
unshard_outer: bool,
mixed_precision: Optional[MixedPrecision],
use_orig_params: bool,
):
"""NOTE: This method depends on FSDP internals."""
fsdp_kwargs = {
"mixed_precision": mixed_precision,
"use_orig_params": use_orig_params,
}
model = FSDP(
nn.Sequential(
FSDP(
nn.Linear(5, 5, bias=False, device=device_type.type), **fsdp_kwargs
),
nn.Linear(5, 3, bias=False, device=device_type.type),
),
**fsdp_kwargs,
)
# Hard code the numel values based on the model
unsharded_inner_numel = 5 * 5
unsharded_outer_numel = 5 * 3
if use_orig_params:
# Account for unsharded padding: since each `FlatParameter` only
# has one original parameter, we only need to pad for divisibility
# by world size and not address alignment
if unsharded_inner_numel % self.world_size:
unsharded_inner_numel += self.world_size - (
unsharded_inner_numel % self.world_size
)
if unsharded_outer_numel % self.world_size:
unsharded_outer_numel += self.world_size - (
unsharded_outer_numel % self.world_size
)
# Round up the sharded numel to account for padding
sharded_inner_numel = int(math.ceil(unsharded_inner_numel / self.world_size))
sharded_outer_numel = int(math.ceil(unsharded_outer_numel / self.world_size))
inner_flat_param = model.module[0]._handle.flat_param
outer_flat_param = model._handle.flat_param
self.assertEqual(sharded_inner_numel, inner_flat_param.numel())
self.assertEqual(sharded_outer_numel, outer_flat_param.numel())
expected_outer_numel = (
unsharded_outer_numel if unshard_outer else sharded_outer_numel
)
expected_inner_numel = (
unsharded_inner_numel
if recurse or not unshard_outer
else sharded_inner_numel
)
module_to_unshard = model if unshard_outer else model[0]
with FSDP.summon_full_params(module_to_unshard, recurse=recurse):
self.assertEqual(expected_outer_numel, outer_flat_param.numel())
self.assertEqual(expected_inner_numel, inner_flat_param.numel())
@skip_if_lt_x_gpu(2)
def test_named_parameters_and_buffers(self):
"""
Tests that ``named_parameters()`` and ``named_buffers()`` for a
top-level FSDP-wrapped model matches their behavior for the equivalent
non-wrapped module.
"""
self.run_subtests(
{"prefix": ["", "test_prefix"], "recurse": [False, True]},
self._test_named_parameters_and_buffers,
)
def _test_named_parameters_and_buffers(self, prefix: str, recurse: bool):
model = NestedWrappedModule.init(
self.process_group,
FSDPInitMode.NO_FSDP,
DEVICEInitMode.DEVICE_BEFORE,
deterministic=True,
)
model.buffer = nn.Buffer(torch.ones(1))
# Wrap the top-level with FSDP since `named_parameters()` and
# `named_buffers` will contain FSDP prefixes if called on a non-FSDP
# root module
fsdp_model = FSDP(
NestedWrappedModule.init(
self.process_group,
FSDPInitMode.NO_FSDP,
DEVICEInitMode.DEVICE_BEFORE,
deterministic=True,
),
self.process_group,
)
fsdp_model.buffer = nn.Buffer(torch.ones(1))
with FSDP.summon_full_params(fsdp_model):
for call in ["named_parameters", "named_buffers"]:
for (n1, p1), (n2, p2) in itertools.zip_longest(
getattr(fsdp_model, call)(prefix=prefix, recurse=recurse),
getattr(model, call)(prefix=prefix, recurse=recurse),
):
self.assertEqual(n1, n2)
self.assertEqual(p1, p2)
@skip_if_lt_x_gpu(2)
def test_with_grads_core(self):
"""
Tests the core usage of``with_grads=True`` by comparing against DDP as
the unsharded equivalent.
"""
self.run_subtests(
{
"writeback": [False, True],
"offload_to_cpu": [False, True],
"sharding_strategy": [
ShardingStrategy.FULL_SHARD,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
],
"use_orig_params": [True],
},
self._test_with_grads_core,
)
def _test_with_grads_core(
self,
writeback: bool,
offload_to_cpu: bool,
sharding_strategy: ShardingStrategy,
use_orig_params: bool,
):
def _check_grads(
ddp_model: DDP,
fsdp_model: FSDP,
old_fsdp_grads: Optional[List[torch.Tensor]],
):
"""
Checks that writes to the FSDP parameters' gradients persist or do
not persist depending on ``writeback`` and the sharding strategy.
The DDP model is used for checking gradient parity to ensure that
FDSP all-gathers the correct gradient values.
"""
WRITEBACK_FACTOR = 2
with FSDP.summon_full_params(
fsdp_model,
writeback=writeback,
offload_to_cpu=offload_to_cpu,
with_grads=True,
):
for (n1, p1), (n2, p2) in zip(
ddp_model.module.named_parameters(),
fsdp_model.named_parameters(),
):
self.assertEqual(n1, clean_tensor_name(n2))
assert p1.grad is not None
torch.testing.assert_close(p1.grad, p2.grad)
# Ensure that the tensor is not all zeros, which would
# mean that the multiplication is vacuous
assert torch.count_nonzero(p2.grad) > 0
p2.grad *= WRITEBACK_FACTOR
new_fsdp_grads = [
param.grad
for param in fsdp_model.parameters()
if param.grad is not None
]
writeback_persists = writeback or (
sharding_strategy == ShardingStrategy.NO_SHARD and not offload_to_cpu
)
for old_grad, new_grad in zip(old_fsdp_grads, new_fsdp_grads):
if writeback_persists:
torch.testing.assert_close(old_grad * WRITEBACK_FACTOR, new_grad)
else:
torch.testing.assert_close(old_grad, new_grad)
if writeback_persists:
# Modify the DDP gradients in the same way for parity
for param in ddp_model.parameters():
param.grad *= WRITEBACK_FACTOR
def _get_error_context(is_supported: bool):
return (
contextlib.nullcontext()
if is_supported
else self.assertRaises(NotImplementedError)
) # some configs are not implemented yet
def _get_fsdp_grads(fsdp_model: FSDP, is_supported: bool):
if is_supported:
return [
param.grad.clone()
for param in fsdp_model.parameters()
if param.grad is not None
]
return None # unused
is_supported = use_orig_params and not offload_to_cpu
model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.NO_FSDP,
DEVICEInitMode.DEVICE_BEFORE,
deterministic=True,
)
ddp_model = DDP(model, device_ids=[device_type])
fsdp_model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.RECURSIVE,
DEVICEInitMode.DEVICE_BEFORE,
deterministic=True,
fsdp_kwargs={
"use_orig_params": use_orig_params,
"sharding_strategy": sharding_strategy,
"device_id": device_type.type,
},
)
with FSDP.summon_full_params(fsdp_model):
for p1, p2 in zip(ddp_model.module.parameters(), fsdp_model.parameters()):
assert torch.all(torch.isclose(p1, p2))
# Check calling after backward
inp = fsdp_model.get_input(torch.device(device_type))
ddp_out = ddp_model(*inp)
fsdp_out = fsdp_model(*inp)
ddp_out.sum().backward()
fsdp_out.sum().backward()
old_fsdp_grads = _get_fsdp_grads(fsdp_model, is_supported)
with _get_error_context(is_supported):
_check_grads(ddp_model, fsdp_model, old_fsdp_grads)
# Check calling between forward and backward
inp = fsdp_model.get_input(torch.device(device_type))
ddp_out = ddp_model(*inp)
fsdp_out = fsdp_model(*inp)
old_fsdp_grads = _get_fsdp_grads(fsdp_model, is_supported)
with _get_error_context(is_supported):
_check_grads(ddp_model, fsdp_model, old_fsdp_grads)
@skip_if_lt_x_gpu(2)
def test_with_grads_none_grads(self):
"""
Tests that if all ranks' ``FlatParameter`` has ``None`` gradient, then
each original parameter sees ``None`` gradient as well.
"""
self.run_subtests(
{
"sharding_strategy": [
ShardingStrategy.FULL_SHARD,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
]
},
self._test_with_grads_none_grads,
)
def _test_with_grads_none_grads(self, sharding_strategy: ShardingStrategy):
fsdp_model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.RECURSIVE,
DEVICEInitMode.DEVICE_BEFORE,
deterministic=True,
fsdp_kwargs={
"use_orig_params": True,
"sharding_strategy": sharding_strategy,
"device_id": device_type.type,
},
)
for fsdp_module in FSDP.fsdp_modules(fsdp_model):
if fsdp_module._handle:
assert fsdp_module._handle.flat_param.grad is None
with FSDP.summon_full_params(fsdp_model, with_grads=True):
for param in fsdp_model.parameters():
self.assertTrue(param.grad is None)
@skip_if_lt_x_gpu(2)
def test_unshard_submodule(self):
model = nn.Sequential(
nn.Sequential(nn.Linear(16, 16), nn.Linear(16, 16)),
nn.Sequential(nn.Linear(16, 16), nn.Linear(16, 16)),
).to(device_type.type)
model = FSDP(model, auto_wrap_policy=ModuleWrapPolicy((nn.Sequential,)))
with FSDP.summon_full_params(model[0]):
# Check that the summoned module does not have its flat parameter
for param_name, param in model[0].named_parameters():
self.assertFalse(FLAT_PARAM in param_name)
self.assertGreater(len(list(model[0].parameters())), 1)
class TestUnshardParamsNoShard(TestUnshardParamsBase):
@property
def world_size(self) -> int:
return 1
@skip_if_lt_x_gpu(1)
def test_unshard_params_writeback_no_shard(self):
"""Tests the ``writeback`` argument (using default for all others)."""
self.run_subtests(
self._get_test_unshard_params_writeback_config(),
self._test_unshard_params_writeback,
)
@skip_if_lt_x_gpu(1)
def test_unshard_params_param_data_no_shard(self):
"""
Tests that parameters are exposed correctly for ``recurse=True`` and
all other argument configs for a non-FSDP root module.
"""
config = self._get_test_unshard_params_param_data_config()
# TODO: `offload_to_cpu=True` with `NO_SHARD` is not supported yet. See
# `test_offload_to_cpu_no_shard_raises()`.
config["offload_to_cpu"] = [False]
self.run_subtests(
config,
self._test_unshard_params_param_data,
)
class TestUnshardParamsErrors(TestUnshardParamsBase):
@property
def world_size(self) -> int:
return 2
@skip_if_lt_x_gpu(2)
def test_unshard_params_from_forward_raises(self):
class MyModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.a = nn.Parameter(torch.zeros(5))
def forward(self, fsdp_module):
with fsdp_module.summon_full_params(fsdp_module):
pass
model = FSDP(MyModule()).to(device_type.type)
with self.assertRaisesRegex(
AssertionError, "Cannot manually unshard parameters during forward/backward"
):
model(model)
@skip_if_lt_x_gpu(2)
def test_unshard_params_from_backward_raises(self):
model = FSDP(nn.Linear(2, 1, device=device_type.type))
output = model(torch.ones(2, device=device_type.type))
def invalid_backward_hook(*args, **kwargs):
with FSDP.summon_full_params(model):
pass
self.assertTrue(output.requires_grad)
output.register_hook(invalid_backward_hook)
with self.assertRaisesRegex(
AssertionError, "Cannot manually unshard parameters during forward/backward"
):
output.backward()
@skip_if_lt_x_gpu(2)
def test_rank0_only_with_writeback_raises(self):
nested_wrapped_module = NestedWrappedModule.init(
self.process_group,
FSDPInitMode.RECURSIVE,
DEVICEInitMode.DEVICE_BEFORE,
)
with self.assertRaisesRegex(NotImplementedError, "is not supported"):
with FSDP.summon_full_params(
nested_wrapped_module, rank0_only=True, writeback=True
):
pass
@skip_if_lt_x_gpu(2)
def test_offload_to_cpu_no_shard_raises(self):
nested_wrapped_module = NestedWrappedModule.init(
self.process_group,
FSDPInitMode.RECURSIVE,
DEVICEInitMode.DEVICE_BEFORE,
{"sharding_strategy": ShardingStrategy.NO_SHARD},
)
with self.assertRaisesRegex(NotImplementedError, "is not supported"):
with FSDP.summon_full_params(
nested_wrapped_module, rank0_only=True, writeback=True
):
pass
if __name__ == "__main__":
run_tests()
|