1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
# Owner(s): ["oncall: distributed"]
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from copy import deepcopy
import torch
import torch.nn as nn
from torch.distributed.optim import (
_apply_optimizer_in_backward,
_get_in_backward_optimizers,
)
# TODO (rohan-varma): Add FSDP & DDP tests once supported
def _validate_params(params_list, fn):
ref_params = params_list[0]
for param_list in params_list[1:]:
for p1, p2 in zip(ref_params, param_list):
fn(p1, p2)
class ApplyOverlappedOptimizerTest(unittest.TestCase):
def _run_training_loop_and_validate(self, inp, models, optimizers):
for i in range(6):
for model in models:
model(inp).sum().backward()
for opt in optimizers:
opt.step()
with self.subTest(i):
_validate_params(
[model.parameters() for model in models],
torch.testing.assert_allclose,
)
for opt in optimizers:
opt.zero_grad(set_to_none=True)
def _test_apply_optimizer_in_backward(self, share_params) -> None:
weight_optimizer_kwargs = {"lr": 1.0}
bias_optimizer_kwargs = {"lr": 0.5}
model = nn.Sequential(nn.Linear(10, 10), nn.Linear(10, 10))
if share_params:
model[0].weight = model[1].weight
# Use different optimizers for weights & biases.
weights = [m.weight for m in model]
biases = [m.bias for m in model]
optim_weight = torch.optim.SGD(weights, **weight_optimizer_kwargs)
optim_bias = torch.optim.SGD(biases, **bias_optimizer_kwargs)
model_with_opt_in_bwd = deepcopy(model)
# Apply different optimizer in backwards for weights and biases.
_apply_optimizer_in_backward(
torch.optim.SGD,
[m.weight for m in model_with_opt_in_bwd],
optimizer_kwargs=weight_optimizer_kwargs,
)
_apply_optimizer_in_backward(
torch.optim.SGD,
[m.bias for m in model_with_opt_in_bwd],
optimizer_kwargs=bias_optimizer_kwargs,
)
_validate_params(
[
model.parameters(),
model_with_opt_in_bwd.parameters(),
],
torch.testing.assert_allclose,
)
self._run_training_loop_and_validate(
torch.randn(4, 10),
[model, model_with_opt_in_bwd],
[optim_weight, optim_bias],
)
def test_apply_optimizer_in_backward(self) -> None:
self._test_apply_optimizer_in_backward(share_params=False)
def test_apply_optimizer_in_backward_shared_params(self) -> None:
self._test_apply_optimizer_in_backward(share_params=True)
def test_no_register_hook(self):
model_with_hook = nn.Sequential(nn.Linear(10, 10), nn.Linear(10, 10))
initial_model = deepcopy(model_with_hook)
model_no_hook = deepcopy(model_with_hook)
_apply_optimizer_in_backward(
torch.optim.SGD,
model_with_hook.parameters(),
optimizer_kwargs={"lr": 0.03},
)
_apply_optimizer_in_backward(
torch.optim.SGD,
model_no_hook.parameters(),
optimizer_kwargs={"lr": 0.03},
register_hook=False,
)
inp = torch.randn(4, 10)
model_with_hook(inp).sum().backward()
model_no_hook(inp).sum().backward()
for p1, p2 in zip(model_with_hook.parameters(), initial_model.parameters()):
with self.assertRaises(AssertionError):
torch.testing.assert_allclose(p1, p2)
for p1, p2 in zip(model_no_hook.parameters(), initial_model.parameters()):
torch.testing.assert_allclose(p1, p2)
def test_multiple_optim_for_params(self) -> None:
model = nn.Sequential(nn.Linear(10, 10), nn.Linear(10, 10))
opt_0_kwargs = {"lr": 0.03}
opt_1_kwargs = {"lr": 0.01}
opt_0 = torch.optim.SGD(model.parameters(), **opt_0_kwargs)
opt_1 = torch.optim.SGD(model.parameters(), **opt_1_kwargs)
model_with_opt_in_bwd = deepcopy(model)
_apply_optimizer_in_backward(
torch.optim.SGD,
model_with_opt_in_bwd.parameters(),
optimizer_kwargs=opt_0_kwargs,
)
_apply_optimizer_in_backward(
torch.optim.SGD,
model_with_opt_in_bwd.parameters(),
optimizer_kwargs=opt_1_kwargs,
)
self._run_training_loop_and_validate(
torch.randn(4, 10),
[model, model_with_opt_in_bwd],
[opt_0, opt_1],
)
def test_get_optimizers_in_backward(self):
# Create a simple test model
class TestModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = torch.nn.Linear(10, 5)
self.linear2 = torch.nn.Linear(5, 2)
model = TestModel()
# Apply optimizers in backward
_apply_optimizer_in_backward(torch.optim.SGD, model.parameters(), {"lr": 0.01})
in_backward_optims = _get_in_backward_optimizers(model)
self.assertEqual(len(list(model.parameters())), len(in_backward_optims))
result = set(in_backward_optims)
expected = {
optim for p in model.parameters() for optim in p._in_backward_optimizers
}
self.assertEqual(result, expected)
|