1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
# This file is a model zoo for testing torch.distributed.pipelining.
import torch
from torch.autograd import Function
from torch.distributed.pipelining import pipe_split, SplitPoint
class ExampleCode(torch.nn.Module):
def __init__(self, d_hid):
super().__init__()
self.mm_param0 = torch.nn.Parameter(torch.randn(d_hid, d_hid))
self.mm_param1 = torch.nn.Parameter(torch.randn(d_hid, d_hid))
self.cval = torch.nn.Buffer(torch.randn((d_hid,), requires_grad=False))
self.lin0 = torch.nn.Linear(d_hid, d_hid)
self.lin1 = torch.nn.Linear(d_hid, d_hid)
def forward(self, x):
x = torch.mm(x, self.mm_param0)
x = torch.relu(x)
# try passing a value that doesn't require_grad across skip boundaries
a_constant = self.cval.clone()
x = self.lin0(x)
pipe_split()
x = torch.relu(x) + a_constant
x = torch.mm(x, self.mm_param1)
x = self.lin1(x)
x = torch.relu(x)
return x
class ModelWithKwargs(torch.nn.Module):
DEFAULT_DHID = 512
DEFAULT_BATCH_SIZE = 256
def __init__(self, d_hid: int = DEFAULT_DHID):
super().__init__()
self.mm_param0 = torch.nn.Parameter(torch.randn(d_hid, d_hid))
self.mm_param1 = torch.nn.Parameter(torch.randn(d_hid, d_hid))
self.lin0 = torch.nn.Linear(d_hid, d_hid)
self.lin1 = torch.nn.Linear(d_hid, d_hid)
def forward(self, x, y=torch.zeros(DEFAULT_BATCH_SIZE, DEFAULT_DHID)):
x = torch.mm(x, self.mm_param0)
x = x + y
x = self.lin0(x)
x = torch.relu(x)
pipe_split()
x = torch.mm(x, self.mm_param1)
x = self.lin1(x)
x = torch.relu(x)
return x
class ModelWithParamAlias(torch.nn.Module):
default_dhid = 512
default_batch_size = 256
def __init__(self, d_hid: int = default_dhid):
super().__init__()
self.mm_param1 = self.mm_param0 = torch.nn.Parameter(torch.randn(d_hid, d_hid))
self.lin1 = self.lin0 = torch.nn.Linear(d_hid, d_hid)
def forward(self, x, y):
x = torch.mm(x, self.mm_param0)
x = x + y
x = self.lin0(x)
x = torch.relu(x)
pipe_split()
x = torch.mm(x, self.mm_param1)
x = self.lin1(x)
x = torch.relu(x)
return x
# MLP Layer
class MLPModule(torch.nn.Module):
def __init__(self, d_hid: int):
super().__init__()
self.net1 = torch.nn.Linear(d_hid, d_hid)
self.relu = torch.nn.ReLU()
self.net2 = torch.nn.Linear(d_hid, d_hid)
def forward(self, x):
x = self.net1(x)
x = self.relu(x)
x = self.net2(x)
return x
# Multi-MLP model
class MultiMLP(torch.nn.Module):
def __init__(self, d_hid: int, n_layers: int = 2):
super().__init__()
self.layers = torch.nn.ModuleList([MLPModule(d_hid) for _ in range(n_layers)])
# For testing purpose only, this should be defined by user
self.split_spec = {
f"layers.{i}": SplitPoint.BEGINNING for i in range(1, n_layers)
}
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
class CustomLinearDx(Function):
@staticmethod
def forward(ctx, input_val, weight, bias, module, layer_idx):
ctx.save_for_backward(input_val, weight, bias)
ctx.module = module
ctx.layer_idx = layer_idx
return input_val.mm(weight.t()) + bias
@staticmethod
def backward(ctx, grad_output):
input_val, weight, bias = ctx.saved_tensors
grad_input = grad_output.mm(weight)
ctx.module.cached_context[ctx.layer_idx].append(grad_output.clone())
ctx.module.cached_context[str(ctx.layer_idx) + "_input"].append(
input_val.clone()
)
return grad_input, None, None, None, None
class CustomLinearDxDw(Function):
@staticmethod
def forward(ctx, input_val, weight, bias):
ctx.save_for_backward(input_val, weight, bias)
return input_val.mm(weight.t()) + bias
@staticmethod
def backward(ctx, grad_output):
input_val, weight, bias = ctx.saved_tensors
grad_input = grad_output.mm(weight)
grad_weight = grad_output.t().mm(input_val)
grad_bias = grad_output.sum(0)
return grad_input, grad_weight, grad_bias
class MLPModuleWithDw(torch.nn.Module):
def __init__(self, d_hid: int):
super().__init__()
self.fc1_weight = torch.nn.Parameter(torch.randn(d_hid, d_hid))
self.fc1_bias = torch.nn.Parameter(torch.randn(d_hid))
self.fc2_weight = torch.nn.Parameter(torch.randn(d_hid, d_hid))
self.fc2_bias = torch.nn.Parameter(torch.randn(d_hid))
torch.nn.init.uniform_(self.fc1_weight, -0.01, 0.01)
torch.nn.init.uniform_(self.fc2_weight, -0.01, 0.01)
torch.nn.init.uniform_(self.fc1_bias, -0.01, 0.01)
torch.nn.init.uniform_(self.fc2_bias, -0.01, 0.01)
self.cached_context = {}
self.cached_context["fc1"] = []
self.cached_context["fc2"] = []
self.cached_context["fc1_input"] = []
self.cached_context["fc2_input"] = []
self.use_custom_logic = False
def forward(self, x):
if not self.use_custom_logic:
self.hidden = CustomLinearDxDw.apply(x, self.fc1_weight, self.fc1_bias)
self.hidden = torch.nn.functional.relu(self.hidden)
output = CustomLinearDxDw.apply(self.hidden, self.fc2_weight, self.fc2_bias)
return output
self.hidden = CustomLinearDx.apply(
x, self.fc1_weight, self.fc1_bias, self, "fc1"
)
self.hidden = torch.nn.functional.relu(self.hidden)
output = CustomLinearDx.apply(
self.hidden, self.fc2_weight, self.fc2_bias, self, "fc2"
)
return output
def compute_dW(self):
grad_output_fc1 = self.cached_context["fc1"].pop(0)
grad_output_fc2 = self.cached_context["fc2"].pop(0)
cached_input_fc1 = self.cached_context["fc1_input"].pop(0)
cached_input_fc2 = self.cached_context["fc2_input"].pop(0)
dW2 = grad_output_fc2.t().mm(cached_input_fc2)
db2 = grad_output_fc2.sum(0)
dW1 = grad_output_fc1.t().mm(cached_input_fc1)
db1 = grad_output_fc1.sum(0)
if self.fc1_weight.grad is not None:
self.fc1_weight.grad += dW1
self.fc1_bias.grad += db1
self.fc2_weight.grad += dW2
self.fc2_bias.grad += db2
else:
self.fc1_weight.grad = dW1
self.fc1_bias.grad = db1
self.fc2_weight.grad = dW2
self.fc2_bias.grad = db2
def toggle(self):
self.use_custom_logic = not self.use_custom_logic
# Multi-MLP model With Dw
class MultiMLPWithDw(torch.nn.Module):
def __init__(self, d_hid: int, n_layers: int = 2):
super().__init__()
self.layers = torch.nn.ModuleList(
[MLPModuleWithDw(d_hid) for _ in range(n_layers)]
)
# For testing purpose only, this should be defined by user
self.split_spec = {
f"layers.{i}": SplitPoint.BEGINNING for i in range(1, n_layers)
}
self.use_custom_logic = False
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
def toggle(self):
self.use_custom_logic = not self.use_custom_logic
for layer in self.layers:
layer.toggle()
def compute_dW(self):
if not self.use_custom_logic:
raise RuntimeError("Need to call toggle() to enable custom backward and dW")
for i in reversed(range(len(self.layers))):
self.layers[i].compute_dW()
|