File: test_unflatten.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (75 lines) | stat: -rw-r--r-- 2,181 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import torch
from torch.distributed.pipelining import pipe_split, pipeline
from torch.testing._internal.common_utils import run_tests, TestCase


# Building block for model
class Block(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv = torch.nn.Conv2d(
            in_channels=16, out_channels=16, kernel_size=3, padding=1
        )
        self.lin0 = torch.nn.Linear(256, 256)
        self.relu = torch.nn.ReLU()
        self.lin1 = torch.nn.Linear(256, 256)

    def forward(self, x: torch.Tensor, constant=None) -> torch.Tensor:
        x = self.conv(x)
        x = self.lin0(x)
        pipe_split()
        x.add(constant)
        x = self.lin1(x)
        return self.relu(x)


# Full model
class M(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.block0 = Block()
        self.block1 = Block()

    def forward(self, x: torch.Tensor, constant=None) -> torch.Tensor:
        x = self.block0(x, constant=constant)
        pipe_split()
        x = self.block1(x, constant=constant)
        return x


class UnflattenTests(TestCase):
    def test_unflatten(self):
        x = torch.randn(1, 16, 256, 256)
        constant = torch.ones(1, 16, 256, 256)

        mod = M()

        pipe = pipeline(
            mod,
            (x,),
            {"constant": constant},
        )

        assert pipe.num_stages == 4
        orig_state_dict = mod.state_dict()

        # Check qualnames
        for stage_idx in range(pipe.num_stages):
            stage_mod = pipe.get_stage_module(stage_idx)
            for param_name, param in stage_mod.named_parameters():
                assert (
                    param_name in orig_state_dict
                ), f"{param_name} not in original state dict"
        print("Param qualname test passed")

        # Check equivalence
        ref = mod(x, constant)
        out = pipe(x, constant)[0]
        torch.testing.assert_close(out, ref)
        print(f"Equivalence test passed {torch.sum(out)} ref {torch.sum(ref)}")


if __name__ == "__main__":
    run_tests()