File: test_micro_pipeline_tp.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (420 lines) | stat: -rw-r--r-- 15,809 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# Owner(s): ["module: c10d"]
import unittest
from typing import Optional

import torch
import torch.distributed as dist
from functorch import make_fx
from torch._inductor.decomposition import decompositions
from torch._inductor.fx_passes.micro_pipeline_tp import (
    _get_unexposed_collectives,
    find_all_gather_patterns,
    find_reduce_scatter_patterns,
    micro_pipeline_tp_pass,
)
from torch._inductor.fx_passes.post_grad import remove_noop_ops, view_to_reshape
from torch._inductor.utils import fresh_inductor_cache, run_and_get_triton_code
from torch.distributed._functional_collectives import (
    all_gather_tensor,
    reduce_scatter_tensor,
)
from torch.distributed._symmetric_memory import _test_mode
from torch.distributed._tensor import DeviceMesh
from torch.distributed._tensor.placement_types import Shard
from torch.distributed.distributed_c10d import _get_group_size_by_name
from torch.distributed.tensor.parallel import (
    ColwiseParallel,
    parallelize_module,
    RowwiseParallel,
)
from torch.testing._internal.common_utils import (  # type: ignore[attr-defined]
    instantiate_parametrized_tests,
    MI300_ARCH,
    parametrize,
    run_tests,
    runOnRocmArch,
    TestCase,
)
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.testing._internal.inductor_utils import HAS_GPU


def _make_post_grad_fx(f, *inps):
    gm = make_fx(f, decompositions, tracing_mode="fake")(*inps)
    remove_noop_ops(gm.graph)
    view_to_reshape(gm)
    return gm


def _fp8_all_gather(tensor: torch.Tensor, gather_dim: int, group_name: str):
    # We don't yet have a canonical pattern for fp8 all-gather. This is a
    # pattern observed in DTensor + float8_experimental.
    ag = all_gather_tensor(tensor, gather_dim=0, group=group_name)
    if gather_dim == 0:
        return ag.view(tensor.dtype)
    chunks = ag.chunk(_get_group_size_by_name(group_name))
    chunks = [chunk.view(torch.uint8) for chunk in chunks]
    return torch.cat(chunks, dim=gather_dim).view(tensor.dtype)


@instantiate_parametrized_tests
class MicroPipelineTPTest(TestCase):
    def setUp(self):
        torch._inductor.config._micro_pipeline_tp = True

        self.rank = 0
        self.world_size = 2
        torch.cuda.set_device("cuda:0")

        store = FakeStore()
        dist.init_process_group(
            backend="fake",
            world_size=self.world_size,
            rank=self.rank,
            store=store,
        )

    def tearDown(self):
        dist.destroy_process_group()

    @unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
    @fresh_inductor_cache()
    def test_find_all_gather_patterns(self):
        group = dist.group.WORLD

        def func(inp: torch.Tensor) -> torch.Tensor:
            a = all_gather_tensor(inp, gather_dim=0, group=group.group_name)
            b = all_gather_tensor(inp, gather_dim=1, group=group.group_name)
            c = _fp8_all_gather(inp, gather_dim=0, group_name=group.group_name)
            d = _fp8_all_gather(inp, gather_dim=1, group_name=group.group_name)
            return a, b, c

        inp = torch.rand(64, 32, device="cuda")

        gm = _make_post_grad_fx(func, inp)
        all_gathers = find_all_gather_patterns(gm.graph)
        self.assertEqual(len(all_gathers), 4)

        # If this test fails, please update find_all_gather_patterns instead of
        # modifying the following assertions.
        for all_gather in all_gathers:
            self.assertEqual(
                all_gather.ag_node.target,
                torch.ops._c10d_functional.all_gather_into_tensor.default,
            )
            self.assertEqual(all_gather.group_name, group.group_name)

        self.assertEqual(all_gathers[0].gather_dim, 0)
        self.assertEqual(
            all_gathers[0].res_node.target,
            torch.ops._c10d_functional.wait_tensor.default,
        )

        self.assertEqual(all_gathers[1].gather_dim, 1)
        self.assertEqual(
            all_gathers[1].res_node.target,
            torch.ops.aten.cat.default,
        )

        self.assertEqual(all_gathers[2].gather_dim, 0)
        self.assertEqual(
            all_gathers[2].res_node.target,
            torch.ops.aten.view.dtype,
        )

        self.assertEqual(all_gathers[3].gather_dim, 1)
        self.assertEqual(
            all_gathers[3].res_node.target,
            torch.ops.aten.view.dtype,
        )

    @unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
    @fresh_inductor_cache()
    def test_find_reduce_scatter_patterns(self):
        group = dist.group.WORLD

        def func(inp: torch.Tensor) -> torch.Tensor:
            a = reduce_scatter_tensor(inp, "sum", scatter_dim=0, group=group.group_name)
            b = reduce_scatter_tensor(inp, "avg", scatter_dim=1, group=group.group_name)
            return a, b

        inp = torch.rand(64, 32, device="cuda")

        gm = make_fx(func)(inp)
        reduce_scatters = find_reduce_scatter_patterns(gm.graph)
        self.assertEqual(len(reduce_scatters), 2)

        # If this test fails, please update find_reduce_scatter_patterns
        # instead of modifying the following assertions.
        for reduce_scatter in reduce_scatters:
            self.assertEqual(
                reduce_scatter.input_node.op,
                "placeholder",
            )
            self.assertEqual(
                reduce_scatter.rs_node.target,
                torch.ops._c10d_functional.reduce_scatter_tensor.default,
            )
            self.assertEqual(
                reduce_scatter.res_node.target,
                torch.ops._c10d_functional.wait_tensor.default,
            )
            self.assertEqual(reduce_scatter.group_name, group.group_name)

        self.assertEqual(reduce_scatters[0].reduce_op, "sum")
        self.assertEqual(reduce_scatters[0].scatter_dim, 0)

        self.assertEqual(reduce_scatters[1].reduce_op, "avg")
        self.assertEqual(reduce_scatters[1].scatter_dim, 1)

    @unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
    @fresh_inductor_cache()
    def test_get_unexposed_collectives(self):
        group = dist.group.WORLD

        def func(inp: torch.Tensor) -> torch.Tensor:
            a = inp @ inp.T
            # b is unexposed (hidden by a)
            b = all_gather_tensor(inp, gather_dim=0, group=group.group_name)
            c = b @ inp.T
            # d is unexposed (hidden by c)
            d = reduce_scatter_tensor(b, "avg", scatter_dim=0, group=group.group_name)
            # e is exposed
            e = all_gather_tensor(d, gather_dim=0, group=group.group_name)
            return a, c, e

        inp = torch.rand(64, 32, device="cuda")

        gm = make_fx(func)(inp)
        overlappable_collectives = _get_unexposed_collectives(gm.graph)
        self.assertEqual(
            list(map(str, overlappable_collectives)),
            ["all_gather_into_tensor", "reduce_scatter_tensor"],
        )

    @unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
    @parametrize("A_dims", [2, 3])
    @parametrize("gather_dim", [0, 1, 2])
    @fresh_inductor_cache()
    def test_fuse_all_gather_matmul(self, A_dims, gather_dim):
        if gather_dim >= A_dims:
            return

        group = dist.group.WORLD

        def func(A_shard: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
            A = all_gather_tensor(A_shard, gather_dim=gather_dim, group=group)
            return A @ B

        if A_dims == 2:
            A_shard_shape = [64, 32]
        elif A_dims == 3:
            A_shard_shape = [2, 64, 32]
        else:
            raise AssertionError(f"Invalid A_dims: {A_dims}")

        A_shard_shape[gather_dim] //= self.world_size
        A_shard = torch.rand(*A_shard_shape, device="cuda")
        B = torch.rand(32, 16, device="cuda")

        with _test_mode():
            compiled = torch.compile(func)
            code = run_and_get_triton_code(compiled, A_shard, B)

            eager_stride = func(A_shard, B).stride()
            compiled_stride = compiled(A_shard, B).stride()
            self.assertEqual(eager_stride, compiled_stride)

        if gather_dim == A_dims - 1:
            self.assertNotIn("fused_all_gather_matmul", code)
            self.assertIn("all_gather_into_tensor", code)
        else:
            # Decomposing the matmul on the K dimension is not supported
            self.assertIn("fused_all_gather_matmul", code)
            self.assertNotIn("all_gather_into_tensor", code)

    @runOnRocmArch(MI300_ARCH)
    @unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
    @parametrize("A_dims", [2, 3])
    @parametrize("gather_dim", [0, 1, 2])
    @fresh_inductor_cache()
    def test_fuse_all_gather_scaled_matmul(self, A_dims, gather_dim):
        if gather_dim >= A_dims:
            return

        group = dist.group.WORLD

        def func(
            A_shard: torch.Tensor,
            B: torch.Tensor,
            A_scale: torch.Tensor,
            B_scale: torch.Tensor,
            out_dtype: Optional[torch.dtype],
        ) -> torch.Tensor:
            A = _fp8_all_gather(
                A_shard, gather_dim=gather_dim, group_name=group.group_name
            )
            if len(A_shard.shape) > 2:
                C = torch._scaled_mm(
                    A.flatten(0, -2), B, A_scale, B_scale, out_dtype=out_dtype
                )
                return C.view(*A.shape[:-1], -1)
            else:
                return torch._scaled_mm(A, B, A_scale, B_scale, out_dtype=out_dtype)

        if A_dims == 2:
            A_shard_shape = [64, 32]
        elif A_dims == 3:
            A_shard_shape = [2, 64, 32]
        else:
            raise AssertionError(f"Invalid A_dims: {A_dims}")

        A_shard_shape[gather_dim] //= self.world_size
        A_shard = torch.rand(*A_shard_shape, device="cuda").to(torch.float8_e4m3fn)
        B = torch.rand(16, 32, device="cuda").to(torch.float8_e4m3fn).T
        A_scale = torch.tensor(0.1, device="cuda")
        B_scale = torch.tensor(0.1, device="cuda")

        gm = _make_post_grad_fx(func, A_shard, B, A_scale, B_scale, torch.bfloat16)
        with _test_mode():
            micro_pipeline_tp_pass(gm.graph)
        if gather_dim == A_dims - 1:
            self.assertNotIn("fused_all_gather_scaled_matmul", str(gm.graph))
            self.assertIn("all_gather_into_tensor", str(gm.graph))
        else:
            # Decomposing the matmul on the K dimension is not supported
            self.assertIn("fused_all_gather_scaled_matmul", str(gm.graph))
            self.assertNotIn("all_gather_into_tensor", str(gm.graph))

        if torch.cuda.get_device_capability() < (8, 9):
            return

        with _test_mode():
            compiled = torch.compile(func)
            code = run_and_get_triton_code(
                compiled, A_shard, B, A_scale, B_scale, torch.bfloat16
            )
        if gather_dim == A_dims - 1:
            self.assertNotIn("fused_all_gather_scaled_matmul", code)
            self.assertIn("all_gather_into_tensor", code)
        else:
            # Decomposing the matmul on the K dimension is not supported
            self.assertIn("fused_all_gather_scaled_matmul", code)
            self.assertNotIn("all_gather_into_tensor", code)

    @unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
    @parametrize("A_dims", [2, 3])
    @parametrize("scatter_dim", [0, 1, 2])
    @fresh_inductor_cache()
    def test_fuse_matmul_reduce_scatter(self, A_dims, scatter_dim):
        if scatter_dim >= A_dims:
            return

        group = dist.group.WORLD

        def func(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
            return reduce_scatter_tensor(A @ B, "avg", scatter_dim, group)

        if A_dims == 2:
            A = torch.rand(64, 32, device="cuda")
        elif A_dims == 3:
            A = torch.rand(2, 64, 32, device="cuda")
        else:
            raise AssertionError(f"Invalid A_dims: {A_dims}")
        B = torch.rand(32, 16, device="cuda")

        with _test_mode():
            compiled = torch.compile(func)
            code = run_and_get_triton_code(compiled, A, B)

        self.assertIn("fused_matmul_reduce_scatter", code)
        self.assertNotIn("reduce_scatter_tensor", code)

    @runOnRocmArch(MI300_ARCH)
    @unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
    @parametrize("A_dims", [2, 3])
    @parametrize("scatter_dim", [0, 1, 2])
    @fresh_inductor_cache()
    def test_fuse_scaled_matmul_reduce_scatter(self, A_dims, scatter_dim):
        if scatter_dim >= A_dims:
            return

        group = dist.group.WORLD

        def func(
            A: torch.Tensor,
            B: torch.Tensor,
            A_scale: torch.Tensor,
            B_scale: torch.Tensor,
            out_dtype: torch.dtype,
        ) -> torch.Tensor:
            if len(A.shape) > 2:
                C = torch._scaled_mm(
                    A.flatten(0, -2), B, A_scale, B_scale, out_dtype=out_dtype
                )
                C = C.view(*A.shape[:-1], B.shape[1])
            else:
                C = torch._scaled_mm(A, B, A_scale, B_scale, out_dtype=out_dtype)
            return reduce_scatter_tensor(C, "avg", scatter_dim, group)

        if A_dims == 2:
            A = torch.rand(64, 32, device="cuda").to(torch.float8_e4m3fn)
        elif A_dims == 3:
            A = torch.rand(2, 64, 32, device="cuda").to(torch.float8_e4m3fn)
        else:
            raise AssertionError(f"Invalid A_dims: {A_dims}")
        B = torch.rand(16, 32, device="cuda").to(torch.float8_e4m3fn).T
        A_scale = torch.tensor(0.1, device="cuda")
        B_scale = torch.tensor(0.1, device="cuda")

        gm = _make_post_grad_fx(func, A, B, A_scale, B_scale, torch.bfloat16)
        with _test_mode():
            micro_pipeline_tp_pass(gm.graph)
        self.assertIn("fused_scaled_matmul_reduce_scatter", str(gm.graph))
        self.assertNotIn("reduce_scatter_tensor", str(gm.graph))

        if torch.cuda.get_device_capability() < (8, 9):
            return

        with _test_mode():
            compiled = torch.compile(func)
            code = run_and_get_triton_code(
                compiled, A, B, A_scale, B_scale, torch.bfloat16
            )
        self.assertIn("fused_scaled_matmul_reduce_scatter", code)
        self.assertNotIn("reduce_scatter_tensor", code)

    @unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
    @parametrize("shard_dim", [0, 1])
    @fresh_inductor_cache()
    def test_dtensor_seq_par(self, shard_dim: int):
        model = MLPModule(device="cuda", bias=False)
        device_mesh = DeviceMesh(
            "cuda",
            torch.arange(0, self.world_size),
        )
        parallelize_plan = {
            "net1": ColwiseParallel(input_layouts=Shard(shard_dim)),
            "net2": RowwiseParallel(output_layouts=Shard(shard_dim)),
        }
        model = parallelize_module(model, device_mesh, parallelize_plan)
        if shard_dim == 0:
            inp = torch.rand(8, 10, device="cuda")
        elif shard_dim == 1:
            inp = torch.rand(2, 8, 10, device="cuda")
        else:
            raise AssertionError("Invalid shard_dim")

        with _test_mode():
            compiled = torch.compile(model)
            code = run_and_get_triton_code(compiled, inp)

        self.assertIn("fused_all_gather_matmul", code)
        self.assertNotIn("all_gather_into_tensor", code)
        self.assertIn("fused_matmul_reduce_scatter", code)
        self.assertNotIn("reduce_scatter_tensor", code)


if __name__ == "__main__":
    run_tests()