1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
|
# Owner(s): ["module: c10d"]
import threading
import unittest
from typing import List
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
from torch._C import FileCheck
from torch._inductor.utils import fresh_inductor_cache, run_and_get_triton_code
from torch.distributed._functional_collectives import (
all_gather_into_tensor_coalesced,
all_gather_tensor,
all_reduce,
all_reduce_coalesced,
all_to_all_single,
AsyncCollectiveTensor,
reduce_scatter_tensor,
reduce_scatter_tensor_coalesced,
)
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import ( # type: ignore[attr-defined]
run_tests,
TestCase,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.testing._internal.inductor_utils import HAS_GPU
def load_test_module(name):
import sys
from importlib.machinery import SourceFileLoader
from pathlib import Path
from unittest import mock
testdir = Path(__file__).absolute().parent.parent
with mock.patch("sys.path", [*sys.path, str(testdir)]):
return SourceFileLoader(
name, str(testdir / f"{name.replace('.', '/')}.py")
).load_module()
AOTIRunnerUtil = load_test_module("inductor.test_aot_inductor_utils").AOTIRunnerUtil
import sys
if not dist.is_available():
print("distributed package not available, skipping tests", file=sys.stderr)
sys.exit(0)
@requires_nccl()
class TestWithNCCL(MultiProcessTestCase):
def setUp(self) -> None:
super().setUp()
self._spawn_processes()
@property
def world_size(self) -> int:
return 2
@property
def ranks(self) -> List[int]:
return list(range(self.world_size))
@property
def device(self) -> torch.device:
return torch.device(f"cuda:{self.rank}")
def _init_process_group(self) -> None:
# Allow testing aoti after torch.compile
torch._inductor.config.triton.store_cubin = True
torch._inductor.config.debug = True
torch.cuda.set_device(self.device)
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend="nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
torch._C._distributed_c10d._register_process_group("default", dist.group.WORLD)
@skip_if_lt_x_gpu(2)
def test_all_reduce_single(self) -> None:
self._init_process_group()
input = torch.full((10, 10), float(self.rank), device=self.device)
output = torch.ops._c10d_functional.all_reduce(
input,
"avg",
"default",
)
output = torch.ops._c10d_functional.wait_tensor(output)
assert id(output) != id(input)
expect = sum(self.ranks) / self.world_size
assert output.eq(expect).all()
# Test Python API and AsyncCollectiveTensor
output = all_reduce(
input,
"avg",
"default",
)
assert isinstance(output, AsyncCollectiveTensor)
assert not output.completed
assert output.eq(expect).all()
assert output.completed
@skip_if_lt_x_gpu(2)
def test_all_reduce_single_(self) -> None:
self._init_process_group()
input = torch.full((10, 10), float(self.rank), device=self.device)
output = torch.ops._c10d_functional.all_reduce_(
input,
"avg",
"default",
)
output = torch.ops._c10d_functional.wait_tensor(output)
assert id(output) == id(input)
expect = sum(self.ranks) / self.world_size
assert output.eq(expect).all()
@skip_if_lt_x_gpu(2)
def test_all_reduce_coalesced(self) -> None:
self._init_process_group()
inputs = [
torch.full((i, i), float(self.rank * i), device=self.device)
for i in range(10)
]
outputs = torch.ops._c10d_functional.all_reduce_coalesced(
inputs,
"avg",
"default",
)
for i, (output, input) in enumerate(zip(outputs, inputs)):
output = torch.ops._c10d_functional.wait_tensor(output)
assert id(output) != id(input)
assert output.eq(sum(self.ranks) / self.world_size * i).all()
# Test Python API and AsyncCollectiveTensor
outputs = all_reduce_coalesced(
inputs,
"avg",
"default",
)
for i, (output, input) in enumerate(zip(outputs, inputs)):
assert not output.completed
assert output.eq(sum(self.ranks) / self.world_size * i).all()
assert output.completed
@skip_if_lt_x_gpu(2)
def test_all_reduce_coalesced_(self) -> None:
self._init_process_group()
inputs = [
torch.full((i, i), float(self.rank * i), device=self.device)
for i in range(10)
]
outputs = torch.ops._c10d_functional.all_reduce_coalesced_(
inputs,
"avg",
"default",
)
for i, (output, input) in enumerate(zip(outputs, inputs)):
output = torch.ops._c10d_functional.wait_tensor(output)
assert id(output) == id(input)
assert output.eq(sum(self.ranks) / self.world_size * i).all()
@skip_if_lt_x_gpu(2)
def test_all_gather_into_tensor_single(self) -> None:
self._init_process_group()
input = torch.full((10, 10), float(self.rank), device=self.device)
output = torch.ops._c10d_functional.all_gather_into_tensor(
input,
self.world_size,
"default",
)
output = torch.ops._c10d_functional.wait_tensor(output)
expect = torch.cat(
[
torch.full((10, 10), float(rank), device=self.device)
for rank in self.ranks
]
)
assert torch.allclose(output, expect)
assert output.eq(expect).all()
# Test out-variant of all_gather_into_tensor
output = torch.empty(expect.shape, device=self.device)
output = torch.ops._c10d_functional.all_gather_into_tensor_out(
input,
self.world_size,
"default",
out=output,
)
output = torch.ops._c10d_functional.wait_tensor(output)
assert torch.allclose(output, expect)
assert output.eq(expect).all()
# Test Python API and AsyncCollectiveTensor
output = all_gather_tensor(
input,
0,
"default",
)
assert isinstance(output, AsyncCollectiveTensor)
assert not output.completed
assert output.eq(expect).all()
assert output.completed
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
# https://github.com/pytorch/pytorch/issues/126338
def test_inductor_dtypeview_memory_leak(self):
self._init_process_group()
def func(arg: torch.Tensor) -> torch.Tensor:
ag0 = torch.ops._c10d_functional.all_gather_into_tensor.default(
arg,
self.world_size,
"default",
)
ag0_view = torch.ops.aten.view.dtype(ag0, torch.int32)
return funcol.wait_tensor(ag0_view)
arg = torch.full(
(10, 10),
float(self.rank),
device=self.device,
dtype=torch.float32,
)
compiled = torch.compile(func)
mem_usage = {}
# check if the aten.view.dtype is compiled to aten.view.dtype
code = run_and_get_triton_code(compiled, arg)
(
FileCheck()
.check("torch.ops._c10d_functional.wait_tensor.default(aten.view.dtype")
.run(code)
)
# check memory leak
for i in range(1, 10):
mem_usage[i] = torch.cuda.max_memory_allocated()
compiled(arg)
assert mem_usage[9] == mem_usage[8]
@skip_if_lt_x_gpu(2)
def test_all_gather_into_tensor_coalesced(self) -> None:
self._init_process_group()
inputs = [
torch.full((10, 10), float(self.rank * i), device=self.device)
for i in range(10)
]
outputs = torch.ops._c10d_functional.all_gather_into_tensor_coalesced(
inputs,
self.world_size,
"default",
)
expect = [
torch.cat(
[
torch.full((10, 10), float(rank) * i, device=self.device)
for rank in self.ranks
]
)
for i in range(10)
]
for i, output in enumerate(outputs):
output = torch.ops._c10d_functional.wait_tensor(output)
assert output.eq(expect[i]).all()
# Test Python API and AsyncCollectiveTensor
outputs = all_gather_into_tensor_coalesced(
inputs,
"default",
)
for i, output in enumerate(outputs):
assert not output.completed
assert output.eq(expect[i]).all()
assert output.completed
@skip_if_lt_x_gpu(2)
def test_reduce_scatter_tensor_single(self) -> None:
self._init_process_group()
input = torch.tensor(self.ranks, device=self.device)
output = torch.ops._c10d_functional.reduce_scatter_tensor(
input,
"avg",
self.world_size,
"default",
)
output = torch.ops._c10d_functional.wait_tensor(output)
assert output.eq(self.rank).all()
# Test Python API and AsyncCollectiveTensor
output = reduce_scatter_tensor(
input,
"avg",
0,
"default",
)
assert isinstance(output, AsyncCollectiveTensor)
assert not output.completed
assert output.eq(self.rank).all()
assert output.completed
@skip_if_lt_x_gpu(2)
def test_reduce_scatter_tensor_coalesced(self) -> None:
self._init_process_group()
inputs = [torch.tensor(self.ranks, device=self.device) * i for i in range(10)]
outputs = torch.ops._c10d_functional.reduce_scatter_tensor_coalesced(
inputs,
"avg",
self.world_size,
"default",
)
for i, output in enumerate(outputs):
output = torch.ops._c10d_functional.wait_tensor(output)
assert output.eq(self.rank * i).all()
# Test Python API and AsyncCollectiveTensor
outputs = reduce_scatter_tensor_coalesced(
inputs,
"avg",
[0] * 10,
"default",
)
for i, output in enumerate(outputs):
assert not output.completed
assert output.eq(self.rank * i).all()
assert output.completed
@skip_if_lt_x_gpu(2)
def test_all_to_all_single(self) -> None:
self._init_process_group()
torch.cuda.set_device(self.device)
torch.manual_seed(42)
send_sz_matrix = torch.randint(0, 20, (self.world_size, self.world_size))
input_split_sizes = send_sz_matrix[self.rank].tolist()
output_split_sizes = send_sz_matrix[:, self.rank].tolist()
input = torch.full((sum(input_split_sizes),), float(self.rank)).cuda()
output = torch.ops._c10d_functional.all_to_all_single(
input,
output_split_sizes,
input_split_sizes,
"default",
)
output = torch.ops._c10d_functional.wait_tensor(output)
expect = torch.cat(
[
torch.full((sz,), float(rank)).cuda()
for rank, sz in enumerate(output_split_sizes)
]
)
assert output.eq(expect).all()
# Test Python API and AsyncCollectiveTensor
output = all_to_all_single(
input, output_split_sizes, input_split_sizes, "default"
)
assert not output.completed
assert output.eq(expect).all()
assert output.completed
@skip_if_lt_x_gpu(2)
def test_broadcast(self) -> None:
self._init_process_group()
input = torch.full((10, 10), float(self.rank), device=self.device)
output = torch.ops._c10d_functional.broadcast(
input,
1,
"default",
)
output = torch.ops._c10d_functional.wait_tensor(output)
assert id(output) != id(input)
expect = 1
assert output.eq(expect).all()
# Test Python API and AsyncCollectiveTensor
output = funcol.broadcast(
input,
1,
"default",
)
assert isinstance(output, AsyncCollectiveTensor)
assert not output.completed
assert output.eq(expect).all()
assert output.completed
@skip_if_lt_x_gpu(2)
def test_wait_tensor(self) -> None:
self._init_process_group()
input = torch.full((10, 10), float(self.rank), device=self.device)
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
output = torch.ops._c10d_functional.all_reduce(
input,
"avg",
"default",
)
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 1)
torch.ops._c10d_functional.wait_tensor(output)
# `wait_tensor(output)` will pop the work from the work registry immediately
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
@skip_if_lt_x_gpu(2)
def test_unwaited(self) -> None:
# Verify that the process can terminate gracefully
# even with unwaited tensors
self._init_process_group()
input = torch.full((10, 10), float(self.rank), device=self.device)
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
output = torch.ops._c10d_functional.all_reduce(
input,
"avg",
"default",
)
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 1)
@skip_if_lt_x_gpu(2)
def test_py_work(self) -> None:
self._init_process_group()
wait_called = False
class MyWork(dist.Work):
def wait(self, _):
nonlocal wait_called
wait_called = True
tensor = torch.rand(2, 2)
torch._C._distributed_c10d._register_work(tensor, MyWork())
torch.ops._c10d_functional.wait_tensor(tensor)
self.assertTrue(wait_called)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
@fresh_inductor_cache()
def test_threading(self):
self._init_process_group()
device = torch.device(f"cuda:{self.rank}")
def func(arg: torch.Tensor) -> torch.Tensor:
buf0 = arg + 42
ar0 = funcol.all_reduce(buf0, "avg", "0")
ar0 = funcol.wait_tensor(ar0)
return ar0 + 1
arg = torch.rand(4, 4, device=device)
func(arg)
compiled = torch.compile(func, fullgraph=True)
code = run_and_get_triton_code(compiled, arg)
FileCheck().check("all_reduce_.default(buf0, 'avg', '0')").run(code)
# Unless explicitly specified (e.g. in a custom runtime), the process
# group registry is shared among all threads in a process. Here we
# verify that a process group registered in main thread can be resolved
# in a different thread.
class TestThread(threading.Thread):
def run(self):
self.exc = None
try:
func(arg)
compiled(arg)
except BaseException as exc:
self.exc = exc
def join(self):
threading.Thread.join(self)
if self.exc:
raise self.exc
t = TestThread()
t.start()
t.join()
class CompileTest(TestCase):
def setUp(self):
# Allow testing aoti after torch.compile
torch._inductor.config.triton.store_cubin = True
torch._inductor.config.debug = True
self.rank = 0
self.world_size = 2
torch.cuda.set_device("cuda:0")
store = FakeStore()
dist.init_process_group(
backend="fake",
world_size=self.world_size,
rank=self.rank,
store=store,
)
def tearDown(self):
dist.destroy_process_group()
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@fresh_inductor_cache()
def test_inductor_all_reduce_single(self):
def func(arg: torch.Tensor) -> torch.Tensor:
buf0 = arg + 42
# Expect in-place with inductor allocated buf
ar0 = funcol.all_reduce(buf0, "avg", "0")
ar0 = funcol.wait_tensor(ar0)
# Expect no in-place with graph input
ar1 = funcol.all_reduce(arg, "avg", "0")
ar1 = funcol.wait_tensor(ar1)
return ar0, ar1
arg = torch.rand(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, arg)
(
FileCheck()
.check("buf0 = empty")
.check("buf7 = empty")
# Expect in-place with inductor allocated buf
.check("torch.ops._c10d_functional.all_reduce_.default(buf0")
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
# Expect no in-place with graph input (buf5 is a clone)
.check("torch.ops._c10d_functional.all_reduce_.default(buf7")
.check("torch.ops._c10d_functional.wait_tensor.default(buf7")
# Expect no extra copy on return
.check("return (buf0, buf7, )")
.run(code)
)
assert "= torch.ops._c10d_functional.wait_tensor.default" not in code
# Test aoti
out = AOTIRunnerUtil.run("cuda", func, (arg,))
torch.cuda.synchronize()
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@fresh_inductor_cache()
def test_inductor_all_reduce_coalesced(self):
def func(args: List[torch.Tensor]) -> torch.Tensor:
bufs = [arg + 42 for arg in args]
# Expect in-place with inductor allocated buf
ar0 = funcol.all_reduce_coalesced(bufs, "avg", "0")
ar0 = [funcol.wait_tensor(out) for out in ar0]
# Expect no in-place with graph input
ar1 = funcol.all_reduce_coalesced(args, "avg", "0")
ar1 = [funcol.wait_tensor(out) for out in ar1]
return ar0, ar1
args = [torch.rand(4, 4, device="cuda") for _ in range(2)]
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, args)
(
FileCheck()
.check("buf0 = empty")
.check("buf5 = empty")
.check("buf1 = empty")
.check("buf6 = empty")
# Expect in-place with inductor allocated buf
.check(
"torch.ops._c10d_functional.all_reduce_coalesced_"
".default([buf0, buf1]"
)
# Expect no in-place with graph input (buf5, buf6 are clones)
.check(
"torch.ops._c10d_functional.all_reduce_coalesced_"
".default([buf5, buf6]"
)
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
.check("torch.ops._c10d_functional.wait_tensor.default(buf1")
.check("torch.ops._c10d_functional.wait_tensor.default(buf5")
.check("torch.ops._c10d_functional.wait_tensor.default(buf6")
# Expect no extra copy on return
.check("return (buf0, buf1, buf5, buf6, )")
.run(code)
)
assert "= torch.ops._c10d_functional.wait_tensor.default" not in code
# Test aoti
out = AOTIRunnerUtil.run("cuda", func, (args,))
torch.cuda.synchronize()
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@fresh_inductor_cache()
def test_inductor_inplace_op_on_view(self):
def func(arg: torch.Tensor) -> torch.Tensor:
buf0 = (arg + 10)[:2]
ar0 = funcol.all_reduce(buf0, "avg", "0")
ar0 = funcol.wait_tensor(ar0)
return ar0
arg = torch.rand(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, arg)
(
FileCheck()
.check("buf0 = empty")
# We always call .contiguous() on the input to all_reduce_,
# so input will not be a view anymore.
.check("torch.ops._c10d_functional.all_reduce_.default(buf0")
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
.check("return (buf0")
.run(code)
)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@fresh_inductor_cache()
def test_inductor_all_reduce_non_contig_input(self):
def func(arg: torch.Tensor) -> torch.Tensor:
ar0 = funcol.all_reduce(arg, "avg", "0")
ar0 = funcol.wait_tensor(ar0)
# Expect allocation
return ar0
arg = torch.rand(4, 4, device="cuda").T
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, arg)
# clone induced by non contig input
assert "torch.ops._c10d_functional.wait_tensor.default" in code
def func2(arg: torch.Tensor) -> torch.Tensor:
torch.ops._c10d_functional.all_reduce_(arg, "avg", "0")
return arg
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, arg)
# clone induced by non contig input
assert "torch.ops._c10d_functional.wait_tensor.default" in code
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@fresh_inductor_cache()
def test_inductor_reuse_buffer_after_inplace_collective(self):
def func(arg: torch.Tensor) -> torch.Tensor:
# Expect allocation
buf0 = arg + 42
ar0 = funcol.all_reduce(buf0, "avg", "0")
ar0 = funcol.wait_tensor(ar0)
# Expect allocation
buf1 = torch.mm(arg, ar0)
# Expect buf0 to be reused
buf2 = torch.mm(arg, buf1)
return buf1, buf2
arg = torch.rand(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, arg)
(
FileCheck()
# Expect allocation
.check("buf0 = empty")
.check("torch.ops._c10d_functional.all_reduce_.default(buf0")
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
# Expect allocation
.check("buf7 = empty")
.check("extern_kernels.mm(arg0_1, buf0, out=buf7")
# Expect buf0 to be reused
.check("buf8 = buf0; del buf0 # reuse")
.check("extern_kernels.mm(arg0_1, buf7, out=buf8")
# Expect no extra copy on return
.check("return (buf7, buf8, )")
.run(code)
)
assert "= torch.ops._c10d_functional.wait_tensor.default" not in code
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@fresh_inductor_cache()
def test_inductor_all_gather_into_tensor_single(self):
def func(arg: torch.Tensor) -> torch.Tensor:
ag0 = funcol.all_gather_tensor(arg, 0, "0")
ag0 = funcol.wait_tensor(ag0)
return ag0
arg = torch.rand(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, arg)
(
FileCheck()
.check(
"buf0 = torch.ops._c10d_functional.all_gather_into_tensor.default(arg0_1"
)
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
# Expect no extra copy on return
.check("return (buf0, )")
.run(code)
)
assert "= torch.ops._c10d_functional.wait_tensor.default" not in code
# Test aoti
out = AOTIRunnerUtil.run("cuda", func, (arg,))
torch.cuda.synchronize()
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@fresh_inductor_cache()
def test_inductor_all_gather_into_tensor_coalesced(self):
def func(args: List[torch.Tensor]) -> torch.Tensor:
ag0 = funcol.all_gather_into_tensor_coalesced(args, "0")
ag0 = [funcol.wait_tensor(out) for out in ag0]
return ag0
args = [torch.rand(4, 4, device="cuda") for _ in range(4)]
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, args)
(
FileCheck()
.check(
"buf0 = torch.ops._c10d_functional.all_gather_into_tensor_coalesced"
".default([arg3_1, arg2_1, arg1_1, arg0_1]"
)
.check("buf1 = buf0[0]")
.check("buf2 = buf0[1]")
.check("buf3 = buf0[2]")
.check("buf4 = buf0[3]")
.check("torch.ops._c10d_functional.wait_tensor.default(buf1")
.check("torch.ops._c10d_functional.wait_tensor.default(buf2")
.check("torch.ops._c10d_functional.wait_tensor.default(buf3")
.check("torch.ops._c10d_functional.wait_tensor.default(buf4")
# Expect no extra copy on return
.check("return (buf1, buf2, buf3, buf4, )")
.run(code)
)
# Test aoti
out = AOTIRunnerUtil.run("cuda", func, (args,))
torch.cuda.synchronize()
@unittest.skipIf(not HAS_GPU, "This is a GPU test!")
@fresh_inductor_cache()
def test_wait_tensor(self):
def func(arg: torch.Tensor) -> torch.Tensor:
t = torch.ops._c10d_functional.all_reduce(arg, "avg", "0")
return funcol.wait_tensor(t)
# Test aoti
arg = torch.rand(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, arg)
(
FileCheck()
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
.check("return (buf0, )")
.run(code)
)
# Test aoti
out = AOTIRunnerUtil.run("cuda", func, (arg,))
torch.cuda.synchronize()
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@fresh_inductor_cache()
def test_inductor_reduce_scatter_tensor_single(self):
def func(arg: torch.Tensor) -> torch.Tensor:
rs0 = funcol.reduce_scatter_tensor(arg, "avg", 0, "0")
rs0 = funcol.wait_tensor(rs0)
return rs0
arg = torch.rand(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, arg)
(
FileCheck()
.check(
"buf0 = torch.ops._c10d_functional.reduce_scatter_tensor.default(arg0_1"
)
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
# Expect no extra copy on return
.check("return (buf0, )")
.run(code)
)
# Test aoti
out = AOTIRunnerUtil.run("cuda", func, (arg,))
torch.cuda.synchronize()
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@fresh_inductor_cache()
def test_inductor_reduce_scatter_tensor_coalesced(self):
def func(args: List[torch.Tensor]) -> torch.Tensor:
rs0 = funcol.reduce_scatter_tensor_coalesced(
args, "avg", [0] * len(args), "0"
)
rs0 = [funcol.wait_tensor(out) for out in rs0]
return rs0
args = [torch.rand(4, 4, device="cuda") for _ in range(4)]
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, args)
(
FileCheck()
.check(
"buf0 = torch.ops._c10d_functional.reduce_scatter_tensor_coalesced"
".default([arg0_1, arg1_1, arg2_1, arg3_1]"
)
.check("buf1 = buf0[0]")
.check("buf2 = buf0[1]")
.check("buf3 = buf0[2]")
.check("buf4 = buf0[3]")
.check("torch.ops._c10d_functional.wait_tensor.default(buf1")
.check("torch.ops._c10d_functional.wait_tensor.default(buf2")
.check("torch.ops._c10d_functional.wait_tensor.default(buf3")
.check("torch.ops._c10d_functional.wait_tensor.default(buf4")
# Expect no extra copy on return
.check("return (buf1, buf2, buf3, buf4, )")
.run(code)
)
# Test aoti
AOTIRunnerUtil.run("cuda", func, (args,))
torch.cuda.synchronize()
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@fresh_inductor_cache()
def test_inductor_all_to_all_single(self):
def _tolist_with_constrain_as_size(tensor):
lst = tensor.tolist()
for elem in lst:
torch._check_is_size(elem)
return lst
def func(
input: torch.Tensor,
output_split_sizes: torch.Tensor,
input_split_sizes: torch.Tensor,
) -> torch.Tensor:
output = funcol.all_to_all_single(
input,
_tolist_with_constrain_as_size(output_split_sizes),
_tolist_with_constrain_as_size(input_split_sizes),
"0",
)
return funcol.wait_tensor(output)
torch.manual_seed(42)
send_sz_matrix = torch.randint(0, 20, (self.world_size, self.world_size))
input_split_sizes = send_sz_matrix[self.rank]
output_split_sizes = send_sz_matrix[:, self.rank].contiguous()
input = torch.full((input_split_sizes.sum().item(),), float(self.rank)).cuda()
with torch._dynamo.config.patch(
dynamic_shapes=True,
capture_dynamic_output_shape_ops=True,
capture_scalar_outputs=True,
):
compiled = torch.compile(func, dynamic=True)
code = run_and_get_triton_code(
compiled, input, output_split_sizes, input_split_sizes
)
(
FileCheck()
.check_regex(
"torch.ops._c10d_functional.all_to_all_single.default\\("
"arg\\d+_\\d+, \\[u\\d+, u\\d+\\], \\[u\\d+, u\\d+\\]"
)
.check("torch.ops._c10d_functional.wait_tensor.default(")
.run(code)
)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@fresh_inductor_cache()
def test_inductor_broadcast(self):
def func(arg: torch.Tensor) -> torch.Tensor:
buf0 = arg + 42
# Expect in-place with inductor allocated buf
br0 = funcol.broadcast(buf0, 1, "0")
br0 = funcol.wait_tensor(br0)
# Expect no in-place with graph input
br1 = funcol.broadcast(arg, 0, "0")
br1 = funcol.wait_tensor(br1)
return br0, br1
arg = torch.rand(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, arg)
(
FileCheck()
.check("buf0 = empty")
.check("buf7 = empty")
# Expect in-place with inductor allocated buf
.check("torch.ops._c10d_functional.broadcast_.default(buf0")
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
# Expect no in-place with graph input (buf5 is a clone)
.check("torch.ops._c10d_functional.broadcast_.default(buf7")
.check("torch.ops._c10d_functional.wait_tensor.default(buf7")
# Expect no extra copy on return
.check("return (buf0, buf7, )")
.run(code)
)
# Test aoti
out = AOTIRunnerUtil.run("cuda", func, (arg,))
torch.cuda.synchronize()
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@fresh_inductor_cache()
def test_ranks_and_tag(self):
def func(arg: torch.Tensor) -> torch.Tensor:
buf0 = arg + 42
# Expect in-place with inductor allocated buf
ar0 = funcol.all_reduce(buf0, "avg", [0, 1], "")
ar0 = funcol.wait_tensor(ar0)
# Expect no in-place with graph input
ar1 = funcol.all_reduce(arg, "avg", [0, 1], "")
ar1 = funcol.wait_tensor(ar1)
return ar0, ar1
arg = torch.rand(4, 4, device="cuda")
compiled = torch.compile(func, fullgraph=True)
code = run_and_get_triton_code(compiled, arg)
(FileCheck().check("all_reduce_.default(buf0, 'avg', '0')").run(code))
if __name__ == "__main__":
run_tests()
|