File: test_c10d_logger.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (153 lines) | stat: -rw-r--r-- 4,850 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Owner(s): ["oncall: distributed"]

import json
import logging
import os
import re
import sys
from functools import partial, wraps

import torch
import torch.distributed as dist
from torch.distributed.c10d_logger import _c10d_logger, _exception_logger


if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)

from torch.testing._internal.common_distributed import MultiProcessTestCase, TEST_SKIPS
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN


if TEST_WITH_DEV_DBG_ASAN:
    print(
        "Skip dev-asan as torch + multiprocessing spawn have known issues",
        file=sys.stderr,
    )
    sys.exit(0)

BACKEND = dist.Backend.NCCL
WORLD_SIZE = min(4, max(2, torch.cuda.device_count()))


def with_comms(func=None):
    if func is None:
        return partial(
            with_comms,
        )

    @wraps(func)
    def wrapper(self, *args, **kwargs):
        if BACKEND == dist.Backend.NCCL and torch.cuda.device_count() < self.world_size:
            sys.exit(TEST_SKIPS[f"multi-gpu-{self.world_size}"].exit_code)
        self.dist_init()
        func(self)
        self.destroy_comms()

    return wrapper


class C10dErrorLoggerTest(MultiProcessTestCase):
    def setUp(self):
        super().setUp()
        os.environ["WORLD_SIZE"] = str(self.world_size)
        os.environ["BACKEND"] = BACKEND
        self._spawn_processes()

    @property
    def device(self):
        return (
            torch.device(self.rank)
            if BACKEND == dist.Backend.NCCL
            else torch.device("cpu")
        )

    @property
    def world_size(self):
        return WORLD_SIZE

    @property
    def process_group(self):
        return dist.group.WORLD

    def destroy_comms(self):
        # Wait for all ranks to reach here before starting shutdown.
        dist.barrier()
        dist.destroy_process_group()

    def dist_init(self):
        dist.init_process_group(
            backend=BACKEND,
            world_size=self.world_size,
            rank=self.rank,
            init_method=f"file://{self.file_name}",
        )

        # set device for nccl pg for collectives
        if BACKEND == "nccl":
            torch.cuda.set_device(self.rank)

    def test_get_or_create_logger(self):
        self.assertIsNotNone(_c10d_logger)
        self.assertEqual(1, len(_c10d_logger.handlers))
        self.assertIsInstance(_c10d_logger.handlers[0], logging.NullHandler)

    @_exception_logger
    def _failed_broadcast_raise_exception(self):
        tensor = torch.arange(2, dtype=torch.int64)
        dist.broadcast(tensor, self.world_size + 1)

    @_exception_logger
    def _failed_broadcast_not_raise_exception(self):
        try:
            tensor = torch.arange(2, dtype=torch.int64)
            dist.broadcast(tensor, self.world_size + 1)
        except Exception:
            pass

    @with_comms
    def test_exception_logger(self) -> None:
        with self.assertRaises(Exception):
            self._failed_broadcast_raise_exception()

        with self.assertLogs(_c10d_logger, level="DEBUG") as captured:
            self._failed_broadcast_not_raise_exception()
            error_msg_dict = json.loads(
                re.search("({.+})", captured.output[0]).group(0).replace("'", '"')
            )

            self.assertEqual(len(error_msg_dict), 9)

            self.assertIn("pg_name", error_msg_dict.keys())
            self.assertEqual("None", error_msg_dict["pg_name"])

            self.assertIn("func_name", error_msg_dict.keys())
            self.assertEqual("broadcast", error_msg_dict["func_name"])

            self.assertIn("backend", error_msg_dict.keys())
            self.assertEqual("nccl", error_msg_dict["backend"])

            self.assertIn("nccl_version", error_msg_dict.keys())
            nccl_ver = torch.cuda.nccl.version()
            self.assertEqual(
                ".".join(str(v) for v in nccl_ver), error_msg_dict["nccl_version"]
            )

            # In this test case, group_size = world_size, since we don't have multiple processes on one node.
            self.assertIn("group_size", error_msg_dict.keys())
            self.assertEqual(str(self.world_size), error_msg_dict["group_size"])

            self.assertIn("world_size", error_msg_dict.keys())
            self.assertEqual(str(self.world_size), error_msg_dict["world_size"])

            self.assertIn("global_rank", error_msg_dict.keys())
            self.assertIn(str(dist.get_rank()), error_msg_dict["global_rank"])

            # In this test case, local_rank = global_rank, since we don't have multiple processes on one node.
            self.assertIn("local_rank", error_msg_dict.keys())
            self.assertIn(str(dist.get_rank()), error_msg_dict["local_rank"])


if __name__ == "__main__":
    run_tests()