1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
|
# Owner(s): ["oncall: distributed"]
import copy
import json
import os
import pickle
import random
import re
import signal
import sys
import tempfile
import threading
import time
import warnings
from contextlib import contextmanager
from datetime import datetime, timedelta
from enum import auto, Enum
from itertools import chain, product
from unittest import mock, SkipTest
import torch
import torch.distributed as c10d
import torch.distributed._functional_collectives as _functional_collectives
if not c10d.is_available() or not c10d.is_nccl_available():
print("c10d NCCL not available, skipping tests", file=sys.stderr)
sys.exit(0)
from typing import Dict, List
import test_c10d_common
from test_c10d_common import ConvNet, DoubleGpuNet, gpus_for_rank, ModuleForDdpCommHook
import torch.distributed as dist
import torch.distributed.algorithms.ddp_comm_hooks.default_hooks as default
import torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook as powerSGD
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch._C._distributed_c10d import OpType, WorkResult
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
get_timeout,
init_multigpu_helper,
MultiProcessTestCase,
requires_gloo,
requires_multicast_support,
requires_nccl,
requires_nccl_version,
skip_if_lt_x_gpu,
skip_if_rocm_multiprocess,
sm_is_or_higher_than,
TEST_SKIPS,
with_dist_debug_levels,
with_nccl_blocking_wait,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
skip_but_pass_in_sandcastle_if,
TEST_CUDA,
TEST_WITH_DEV_DBG_ASAN,
TEST_WITH_ROCM,
TestCase,
)
from torch.utils.cpp_extension import load_inline
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip ASAN as torch + multiprocessing spawn have known issues", file=sys.stderr
)
sys.exit(0)
# bfloat16 is only supported by CUDA 11+
BFLOAT16_AVAILABLE = torch.cuda.is_available() and (
(torch.version.cuda is not None and int(torch.version.cuda.split(".")[0]) >= 11)
or torch.version.hip is not None
)
class RendezvousEnvTest(TestCase):
@retry_on_connect_failures
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_CUDA, "No GPUs available, skipping test")
def test_common_errors(self):
vars = {
"WORLD_SIZE": "1",
"RANK": "0",
"MASTER_ADDR": "127.0.0.1",
"MASTER_PORT": str(common.find_free_port()),
}
class Env:
def __init__(self, vars):
self.env_patcher = mock.patch.dict(os.environ, vars, clear=True)
def __enter__(self):
self.env_patcher.start()
def __exit__(self, type, value, traceback):
self.env_patcher.stop()
def without(d, key):
d = d.copy()
d.pop(key)
return d
def withouts(d, keys):
d = d.copy()
for key in keys:
d.pop(key)
return d
with Env(without(vars, "WORLD_SIZE")):
self.assertEqual(None, os.environ.get("WORLD_SIZE"))
with self.assertRaisesRegex(ValueError, "WORLD_SIZE expected"):
gen = c10d.rendezvous("env://")
next(gen)
c10d.init_process_group(backend="nccl", world_size=1)
self.assertEqual(c10d.get_rank(), 0)
self.assertEqual(c10d.get_world_size(), 1)
c10d.destroy_process_group()
with Env(without(vars, "RANK")):
self.assertEqual(None, os.environ.get("RANK"))
with self.assertRaisesRegex(ValueError, "RANK expected"):
gen = c10d.rendezvous("env://")
next(gen)
c10d.init_process_group(backend="nccl", rank=0)
self.assertEqual(c10d.get_rank(), 0)
self.assertEqual(c10d.get_world_size(), 1)
c10d.destroy_process_group()
with Env(withouts(vars, ["RANK", "WORLD_SIZE"])):
self.assertEqual(None, os.environ.get("RANK"))
self.assertEqual(None, os.environ.get("WORLD_SIZE"))
c10d.init_process_group(backend="nccl", rank=0, world_size=1)
self.assertEqual(c10d.get_rank(), 0)
self.assertEqual(c10d.get_world_size(), 1)
c10d.destroy_process_group()
with Env(vars):
c10d.init_process_group(backend="nccl")
self.assertEqual(c10d.get_rank(), 0)
self.assertEqual(c10d.get_world_size(), 1)
c10d.destroy_process_group()
with Env(without(vars, "MASTER_ADDR")):
self.assertEqual(None, os.environ.get("MASTER_ADDR"))
with self.assertRaisesRegex(ValueError, "MASTER_ADDR expected"):
gen = c10d.rendezvous("env://")
next(gen)
with Env(without(vars, "MASTER_PORT")):
self.assertEqual(None, os.environ.get("MASTER_PORT"))
with self.assertRaisesRegex(ValueError, "MASTER_PORT expected"):
gen = c10d.rendezvous("env://")
next(gen)
with Env(without(vars, "WORLD_SIZE")):
self.assertEqual(None, os.environ.get("WORLD_SIZE"))
gen = c10d.rendezvous(f"env://?world_size={1}")
_, _, size = next(gen)
self.assertEqual(size, 1)
with Env(without(vars, "RANK")):
self.assertEqual(None, os.environ.get("RANK"))
gen = c10d.rendezvous(f"env://?rank={0}")
_, rank, _ = next(gen)
self.assertEqual(rank, 0)
with Env(withouts(vars, ["RANK", "WORLD_SIZE"])):
self.assertEqual(None, os.environ.get("RANK"))
self.assertEqual(None, os.environ.get("WORLD_SIZE"))
gen = c10d.rendezvous(f"env://?rank={0}&world_size={1}")
_, rank, size = next(gen)
self.assertEqual(rank, 0)
self.assertEqual(size, 1)
class TimeoutTest(test_c10d_common.AbstractTimeoutTest, TestCase):
@requires_nccl()
@retry_on_connect_failures
@skip_but_pass_in_sandcastle_if(not TEST_CUDA, "No GPUs available, skipping test")
def test_default_store_timeout_nccl(self):
self._test_default_store_timeout("nccl")
class ProcessGroupNCCLNoGPUTest(TestCase):
MAIN_PROCESS_RANK = 0
def setUp(self):
self.rank = self.MAIN_PROCESS_RANK
self.world_size = 1
self.file = tempfile.NamedTemporaryFile(delete=False)
def tearDown(self):
pass
@requires_nccl()
@skip_but_pass_in_sandcastle_if(TEST_CUDA, "GPUs are available, skipping test")
def test_init_no_gpus(self):
store = c10d.FileStore(self.file.name, self.world_size)
with self.assertRaisesRegex(
ValueError, "ProcessGroupNCCL is only supported with GPUs, no GPUs found!"
):
c10d.ProcessGroupNCCL(store, self.rank, self.world_size)
class ProcessGroupNCCLInitTest(MultiProcessTestCase):
device_type = "cuda"
def setUp(self):
super().setUp()
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
@property
def world_size(self):
dm = torch.get_device_module(self.device_type)
return dm.device_count()
@property
def device(self):
return torch.device(self.device_type, self.rank % self.world_size)
# A helper with the must-needed init args for test infra.
# kwargs can be filled in by individual init tests.
def _init_process_group(self, **kwargs):
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
rank=self.rank,
world_size=self.world_size,
store=store,
**kwargs,
)
@requires_nccl()
@skip_if_lt_x_gpu(1)
def test_init_wo_backend_str(self):
self._init_process_group(device_id=self.device)
x = torch.empty(1, device=self.device)
c10d.all_reduce(x)
class ProcessGroupNCCLGroupTest(MultiProcessTestCase):
def _create_process_group_nccl(self, store, opts, device_id=None):
# create nccl processgroup with opts
c10d.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
pg_options=opts,
device_id=device_id,
)
pg = c10d.distributed_c10d._get_default_group()
return pg
def opts(self, high_priority_stream=False):
opts = c10d.ProcessGroupNCCL.Options()
opts.is_high_priority_stream = high_priority_stream
return opts
def setUp(self):
super().setUp()
# Need to skip return code checking for these tests since the child
# processes don't exit cleanly in some cuda versions
self.skip_return_code_checks = [
self.test_nan_assert_float16.__wrapped__,
self.test_nan_assert_float32.__wrapped__,
self.test_nan_assert_float64.__wrapped__,
self.test_nan_assert_bfloat16.__wrapped__,
self.test_nan_assert_float8_e4m3fn.__wrapped__,
self.test_nan_assert_float8_e5m2.__wrapped__,
]
# TORCH_NCCL_BLOCKING_WAIT overrides TORCH_NCCL_ASYNC_ERROR_HANDLING hence tests
# that use TORCH_NCCL_BLOCKING_WAIT will test it as expected.
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1"
# self.num_gpus = torch.cuda.device_count()
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
@property
def world_size(self):
return 2
@property
def rank_to_GPU(self):
# return rank to GPU map
return init_multigpu_helper(self.world_size, "nccl")
@property
def destroy_pg_upon_exit(self) -> bool:
# This TestCase focuses on creation, destroy and abort of PG's. So it
# does not need auto-destroy upon exit.
return False
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 1 GPU")
@skip_if_lt_x_gpu(1)
def test_nccl_dist_backend_error(self):
store = c10d.FileStore(self.file_name, self.world_size)
self._create_process_group_nccl(store, self.opts())
# Both rank 0 and 1 will use the same CUDA device resulting in ncclInvalidUsage
with self.assertRaises(dist.DistBackendError) as cm:
dist.broadcast(torch.tensor([1, 2, 3]).cuda(), 0)
self.assertTrue(isinstance(cm.exception, dist.DistError))
self.assertIsInstance(cm.exception, RuntimeError)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_abort_pg(self):
# Disable ASYNC_ERROR_HANDLING for this test to ensure we can programmatically
# abort the process group.
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "0"
store = c10d.FileStore(self.file_name, self.world_size)
self._create_process_group_nccl(store, self.opts())
device = self.rank_to_GPU[self.rank][0]
t = torch.rand(10, 10, device=device)
# First allreduce to initialize state.
dist.all_reduce(t)
def abortpg():
c10d.distributed_c10d._get_default_group()._get_backend(
torch.device(device)
).abort()
# Initialize DDP to ensure "destroy_process_group" will not call
# ProcessGroupNCCL destructor since DDP holds a reference to process group.
# Run a single iteration of DDP to initialize state.
model = DistributedDataParallel(
torch.nn.Linear(10, 10).to(device), device_ids=[device]
)
model(t).sum().backward()
# Now simulate collective getting stuck and abort gets us unstuck
if self.rank == 0:
dist.all_reduce(t)
# Schedule thread before we get stuck to abort pg.
thread = threading.Thread(target=abortpg)
thread.start()
# We would get stuck here due to d2h if we didn't abort.
t_cpu = t.cpu()
thread.join()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("eager_init", [True, False])
def test_close_pg(self, eager_init: bool):
# Disable ASYNC_ERROR_HANDLING for this test to ensure we can programmatically
# abort the process group.
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "0"
store = c10d.FileStore(self.file_name, self.world_size)
device = torch.device(f"cuda:{self.rank % torch.cuda.device_count()}")
c10d.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
device_id=device if eager_init else None,
)
t = torch.rand(10, 10, device=device)
# First allreduce to initialize state.
dist.all_reduce(t)
# Destroy pg and validate pg is no longer valid
dist.destroy_process_group()
with self.assertRaises(ValueError):
dist.all_reduce(t)
@requires_nccl()
@skip_if_rocm_multiprocess
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_restart_pg(self):
# Note: restart test passes steadily only for blocking mode for now.
# TODO: expand this test to non-blocking mode
store = c10d.FileStore(self.file_name, self.world_size)
device = torch.device(f"cuda:{self.rank % torch.cuda.device_count()}")
# initialize pg for the first time
c10d.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
t0 = torch.rand(10, 10, device=device)
# First allreduce to lazy initialize default pg
dist.all_reduce(t0)
torch.cuda.synchronize()
# Destroy pg
dist.destroy_process_group()
# we need a new Store for the new PG, achieving it by adding prefix
new_store = c10d.PrefixStore("2nd", store)
# re-initialize pg
c10d.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=new_store,
)
t1 = torch.rand(5, 5, device=device)
dist.all_reduce(t1)
torch.cuda.synchronize()
dist.destroy_process_group()
# validate default pg is no longer valid
with self.assertRaises(ValueError):
dist.all_reduce(t1)
CUDA_12_AND_ABOVE = torch.cuda.is_available() and (
torch.version.cuda is not None and int(torch.version.cuda.split(".")[0]) >= 12
)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(
not (TEST_MULTIGPU and CUDA_12_AND_ABOVE),
"NCCL test requires 2+ GPUs and Device side assert could cause unexpected errors in lower versions of CUDA",
)
@parametrize(
"type",
[
torch.float16,
torch.float32,
torch.float64,
torch.bfloat16,
torch.float8_e4m3fn,
torch.float8_e5m2,
],
)
@skip_if_rocm_multiprocess
def test_nan_assert(self, type):
# Expecting a device-side error when NaN is detected
os.environ["TORCH_NCCL_NAN_CHECK"] = "1"
store = c10d.FileStore(self.file_name, self.world_size)
pg = self._create_process_group_nccl(store, self.opts())
device = self.rank_to_GPU[self.rank][0]
# Cover different buffer sizes
if type == torch.float64:
size = (1024,) # 1K elements
elif type == torch.float32:
size = (1024, 1024) # 1M elements
elif type == torch.float16:
size = (1024, 1024, 1024) # 1G elements
else:
size = (1,) # 1 element
# Note: currently we cannot fill values into a FP8 tensor, thus we
# create the NaN tensor in float32 type and cast it to FP8
if type == torch.float8_e4m3fn or type == torch.float8_e5m2:
init_type = torch.float32
else:
init_type = type
nan_tensor = torch.zeros(*size, dtype=init_type, device=device)
# randomly pick an nan element
index = tuple([random.randrange(size[i]) for i in range(len(size))])
nan_tensor[index] = float("nan")
if init_type != type:
# Now cast to the targeted dtype
nan_tensor = nan_tensor.to(type)
output = torch.empty(self.world_size, *size, dtype=type, device=device)
with self.assertRaises(RuntimeError):
# Note: using all-gather here bc FP8 types do not support reduce ops
# at the moment
pg._allgather_base(output, nan_tensor)
dist.destroy_process_group()
# reset env
os.environ["TORCH_NCCL_NAN_CHECK"] = "0"
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_nan_rank_filter(self):
# Putting NaN at recv buffer, program should not fail as NaN checker
# should not check on receive buffer
os.environ["TORCH_NCCL_NAN_CHECK"] = "1"
store = c10d.FileStore(self.file_name, self.world_size)
device = torch.device("cuda:%d" % self.rank)
c10d.init_process_group(
backend="nccl", store=store, rank=self.rank, world_size=self.world_size
)
t = torch.ones(3, 4, dtype=torch.bfloat16, device=device)
if self.rank != 0:
# Putting NaN at recv buffer
t[1, 1] = float("nan")
# Against broadcast
c10d.broadcast(t, 0)
# Against P2P
if self.rank == 0:
c10d.send(t, 1)
elif self.rank == 1:
c10d.recv(t, 0)
c10d.destroy_process_group()
# reset env
os.environ["TORCH_NCCL_NAN_CHECK"] = "0"
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_nan_check(self):
# Not expecting an error, NaN check should not make legit code fail
device = torch.device("cuda:%d" % self.rank)
if not sm_is_or_higher_than(device, 8, 0):
self.skipTest("bf16 requires sm >= 8.0")
os.environ["TORCH_NCCL_NAN_CHECK"] = "1"
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
backend="nccl", store=store, rank=self.rank, world_size=self.world_size
)
x = torch.ones((10,), dtype=torch.bfloat16, device=device) * self.rank
t = torch.ones(3, 4, dtype=torch.bfloat16, device=device)
c10d.broadcast(x, src=0)
c10d.all_reduce(t)
c10d.barrier()
c10d.destroy_process_group()
# reset env
os.environ["TORCH_NCCL_NAN_CHECK"] = "0"
def _helper_test_extra_cuda_context_by_nvml(self):
"""
A helper for `test_extra_cuda_context`, if pynvml is avaiable.
pynvml provides python bindings for NVIDIA NVML functionalities.
Here we are interested in: nvmlDeviceGetComputeRunningProcesses
"""
import pynvml
pynvml.nvmlInit()
device = torch.device("cuda:%d" % self.rank)
x = torch.empty((1,), device=device)
work = c10d.all_reduce(x, async_op=True)
# Wait for non-0 ranks to garbage collect Work -- this is the latest
# point where extra CUDA context can be created
if self.rank == 0:
time.sleep(5)
del work
handle = pynvml.nvmlDeviceGetHandleByIndex(self.rank)
processes = pynvml.nvmlDeviceGetComputeRunningProcesses(handle)
nprocs = len(processes)
# A barrier for non-0 ranks
c10d.all_reduce(x)
torch.cuda.synchronize(device)
c10d.destroy_process_group()
self.assertLessEqual(
nprocs,
1,
f"Found {nprocs} processes creating contexts on {device}, expecting 1 at most",
)
def _helper_test_extra_cuda_context_by_memory(self):
"""
A helper for `test_extra_cuda_context`, if pynvml is NOT avaiable.
If extra context is created, it would manifest into device 0's memory usage.
"""
device = torch.device("cuda:%d" % self.rank)
x = torch.empty((1,), device=device)
# Rank 0 takes a snapshot before collective -- this snapshot should have
# included rank 0's own context.
if self.rank == 0:
free, total = torch.cuda.mem_get_info(device)
used_before = float(total - free)
work = c10d.all_reduce(x, async_op=True)
# Wait for non-0 ranks to garbage collect Work -- this is the latest
# point where extra CUDA context can be created
if self.rank == 0:
time.sleep(5)
free, total = torch.cuda.mem_get_info(device)
used_after = float(total - free)
del work
# A barrier for non-0 ranks
c10d.all_reduce(x)
torch.cuda.synchronize(device)
c10d.destroy_process_group()
if self.rank == 0:
# If non-0 rank creates a context on device 0, this assert would
# fail because one context takes about 1 GB -- much more than the
# tensor size created in this test.
self.assertTrue(
used_after < used_before * 1.5,
f"{device} used {used_after} bytes after collective, "
f"50% more than the status before ({used_before} bytes). "
f"Extra CUDA context may have been created.",
)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_extra_cuda_context(self):
# Check if non-0 ranks would create extra CUDA context on device 0
store = c10d.FileStore(self.file_name, self.world_size)
device = torch.device("cuda:%d" % self.rank)
c10d.init_process_group(
backend="nccl",
store=store,
rank=self.rank,
world_size=self.world_size,
device_id=device,
)
try:
self._helper_test_extra_cuda_context_by_nvml()
except ModuleNotFoundError:
self._helper_test_extra_cuda_context_by_memory()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_destruct_before_terminate_pg(self):
# Disable ASYNC_ERROR_HANDLING for this test to ensure we can programmatically
# abort the process group.
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "0"
store = c10d.FileStore(self.file_name, self.world_size)
pg = self._create_process_group_nccl(store, self.opts())
device = self.rank_to_GPU[self.rank][0]
t = torch.rand(10, 10, device=device)
# First allreduce to initialize state.
pg.allreduce(t)
# force destruction before terminating comms, destructor would terminate comms
del pg
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_abort_in_destroy_pg(self):
# Disable ASYNC_ERROR_HANDLING for this test to ensure we can programmatically
# abort the process group.
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "0"
store = c10d.FileStore(self.file_name, self.world_size)
pg = self._create_process_group_nccl(store, self.opts())
device = self.rank_to_GPU[self.rank][0]
t = torch.rand(10, 10, device=device)
# First allreduce to initialize state.
pg.allreduce(t)
# Destroy pg and validate pg is NOT in working condition since
# we have shutdown comms
dist.destroy_process_group()
with self.assertRaises(dist.DistBackendError):
pg.allreduce([t])
@requires_nccl()
@skip_but_pass_in_sandcastle_if(
torch.cuda.device_count() < 2, "NCCL test requires 2+ GPUs"
)
def test_close_multi_pg_unordered(self):
store = c10d.FileStore(self.file_name, self.world_size)
pg = self._create_process_group_nccl(store, self.opts())
device = self.rank_to_GPU[self.rank][0]
t = torch.rand(10, 10, device=device)
# First allreduce to initialize default PG's communicator.
pg.allreduce(t).wait()
new_pg1 = c10d.new_group([0, 1])
new_pg2 = c10d.new_group([0, 1])
if self.rank == 0 or self.rank == 1:
t1 = torch.rand(10, 10, device=device)
t2 = torch.rand(10, 10, device=device)
new_pg1.allreduce(t1).wait()
new_pg2.allreduce(t2).wait()
if self.rank == 0:
dist.destroy_process_group(new_pg2)
# force destruction of pg2 first
del new_pg2
dist.destroy_process_group(new_pg1)
del new_pg1
if self.rank == 1:
c10d.destroy_process_group(new_pg1)
# force destruction of pg1 first
del new_pg1
dist.destroy_process_group(new_pg2)
del new_pg2
dist.destroy_process_group()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(
torch.cuda.device_count() < 2, "NCCL test requires 2+ GPUs"
)
def test_abort_in_destroy_multi_pgs(self):
store = c10d.FileStore(self.file_name, self.world_size)
pg = self._create_process_group_nccl(store, self.opts())
device = self.rank_to_GPU[self.rank][0]
t = torch.rand(10, 10, device=device)
# First allreduce to initialize default PG's communicator.
pg.allreduce(t).wait()
new_pg1 = c10d.new_group([0, 1])
new_pg2 = c10d.new_group([0, 1])
t1 = torch.rand(10, 10, device=device)
t2 = torch.rand(10, 10, device=device)
new_pg1.allreduce(t1).wait()
new_pg2.allreduce(t2).wait()
backend = pg._get_backend(torch.device(device))
# default PG's backend should have a split count of 0 because
# it's not eager initialized
self.assertEqual(backend.comm_split_count(), 0)
# shutdown all NCCL PGs in one shot
dist.destroy_process_group()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(
torch.cuda.device_count() < 2, "NCCL test requires 2+ GPUs"
)
def test_abort_in_destroy_mixed_empty_pgs(self):
store = c10d.FileStore(self.file_name, self.world_size)
pg = self._create_process_group_nccl(store, self.opts())
device = self.rank_to_GPU[self.rank][0]
t = torch.rand(10, 10, device=device)
# First allreduce to initialize default PG's communicator.
pg.allreduce(t).wait()
# PG1 is an PG without comms initialized, since we don't call collective on it
new_pg1 = c10d.new_group([0, 1])
new_pg2 = c10d.new_group([0, 1])
t2 = torch.rand(10, 10, device=device)
new_pg2.allreduce(t2).wait()
backend = pg._get_backend(torch.device(device))
# default PG's backend should have a split count of 0
self.assertEqual(backend.comm_split_count(), 0)
# shutdown all NCCL PGs in one shot
dist.destroy_process_group()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(
torch.cuda.device_count() < 2, "NCCL test requires 2+ GPUs"
)
def test_file_store_check(self):
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "0"
os.environ["TORCH_NCCL_ENABLE_MONITORING"] = "0"
# FileStore check() would be executed
os.environ["TORCH_NCCL_DUMP_ON_TIMEOUT"] = "1"
os.environ["TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC"] = "0"
# self.file_name is created using "delete=False"
# e.g., self.file_name = tempfile.NamedTemporaryFile(delete=False).name
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend="nccl", rank=self.rank, world_size=self.world_size, store=store
)
pg = dist.distributed_c10d._get_default_group()
self.assertEqual(pg.rank(), self.rank)
self.assertEqual(pg.size(), self.world_size)
# give enough time for check() to be executed multiple times
time.sleep(2)
dist.destroy_process_group()
def _check_nccl_timeout(self, expected_timeout):
pg = dist.distributed_c10d._get_default_group()
options = pg._get_backend(torch.device(f"cuda:{self.rank}")).options
self.assertEqual(options._timeout, expected_timeout)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_CUDA, "No GPUs available, skipping test")
def test_init_process_group_nccl_timeout(self):
# nccl is handled 'specially' inside init_process_group and its options class is different from the options
# used by the other PG's. There are specific edge cases for nccl that need to be tested.
store = c10d.FileStore(self.file_name, self.world_size)
base_opts = dict(
backend="nccl", store=store, rank=self.rank, world_size=self.world_size
)
# test the default value coming from the `init_process_group` kwarg default
dist.init_process_group(**base_opts)
self._check_nccl_timeout(torch.distributed.constants.default_pg_nccl_timeout)
dist.destroy_process_group()
# test that `kwarg` timeout takes effect
new_timeout = timedelta(seconds=123)
dist.init_process_group(**base_opts, timeout=new_timeout)
self._check_nccl_timeout(new_timeout)
dist.destroy_process_group()
# test that timeout value provided via `pg_options` kwarg is ignored and issues warning,
# 'timeout' kwarg (or its kwdefault) taking precedence
opts = dist.ProcessGroupNCCL.Options()
opts._timeout = timedelta(seconds=123)
with warnings.catch_warnings(record=True) as w:
dist.init_process_group(**base_opts, pg_options=opts)
# TODO(whc) i verified that we are indeed emitting this warning, and i can't figure out why i can't catch it.
# self.assertEqual(len(w), 1)
# self.assertTrue("pg_options._timeout was specified" in str(w[-1].message))
self._check_nccl_timeout(torch.distributed.constants.default_pg_nccl_timeout)
dist.destroy_process_group()
# test that timeout value provided via `pg_options` kwarg is ignored and issues warning,
# 'timeout' kwarg taking precedence
opts = dist.ProcessGroupNCCL.Options()
opts._timeout = timedelta(seconds=123)
dist.init_process_group(
**base_opts, pg_options=opts, timeout=timedelta(seconds=1240)
)
self._check_nccl_timeout(timedelta(seconds=1240))
dist.destroy_process_group()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("backend", [None, "nccl"])
def test_set_nccl_pg_timeout(self, backend):
store = c10d.FileStore(self.file_name, self.world_size)
opts = dict(
backend=backend,
store=store,
rank=self.rank,
world_size=self.world_size,
timeout=timedelta(seconds=123),
)
dist.init_process_group(**opts)
pg = dist.distributed_c10d._get_default_group()
pg.allreduce(torch.rand(10).cuda(self.rank))
self._check_nccl_timeout(timedelta(seconds=123))
pg._get_backend(torch.device(f"cuda:{self.rank}"))._set_default_timeout(
timedelta(seconds=23)
)
self._check_nccl_timeout(timedelta(seconds=23))
pg.allreduce(torch.rand(10).cuda(self.rank))
c10d.distributed_c10d._set_pg_timeout(timedelta(seconds=252), pg)
self._check_nccl_timeout(timedelta(seconds=252))
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("backend", [None, "nccl"])
def test_extend_nccl_pg_timeout(self, backend):
torch.cuda.set_device(self.rank)
store = c10d.FileStore(self.file_name, self.world_size)
opts = dict(
backend=backend,
store=store,
rank=self.rank,
world_size=self.world_size,
timeout=timedelta(seconds=123),
)
dist.init_process_group(**opts)
pg = dist.distributed_c10d._get_default_group()
bankend = pg._get_backend(torch.device(f"cuda:{self.rank}"))
w = pg.allreduce(torch.rand(10).cuda(self.rank))
self.assertTrue(bankend._verify_work_timeout(w, timedelta(seconds=123)))
w.wait()
bankend._set_default_timeout(timedelta(seconds=3))
if self.rank == 0:
# Ideally we want to sleep for a very long time, but this is not
# feasible in unit test. So this is only a very tiny case.
time.sleep(5)
pg.allreduce(torch.rand(10).cuda(self.rank))
time.sleep(5)
pg.allreduce(torch.rand(5).cuda(self.rank))
w = pg.allreduce(torch.rand(10).cuda(self.rank))
self.assertTrue(bankend._verify_work_timeout(w, timedelta(seconds=3)))
w.wait()
else:
dist.distributed_c10d._add_ephemeral_timeout_for_all_pgs(
timedelta(seconds=10)
)
w1 = pg.allreduce(torch.rand(10).cuda(self.rank))
w2 = pg.allreduce(torch.rand(5).cuda(self.rank))
self.assertTrue(bankend._verify_work_timeout(w1, timedelta(seconds=13)))
self.assertTrue(bankend._verify_work_timeout(w2, timedelta(seconds=13)))
w1.wait()
dist.distributed_c10d._add_ephemeral_timeout_for_all_pgs(
timedelta(seconds=5)
)
# Since we are not block wait so use a sync here to leave enough time
# for watchdog to reset first timeout extension.
torch.cuda.synchronize(torch.device(f"cuda:{self.rank}"))
w = pg.allreduce(torch.rand(10).cuda(self.rank))
self.assertTrue(bankend._verify_work_timeout(w, timedelta(seconds=8)))
w.wait()
@requires_nccl_version((2, 18), "Need NCCL 2.18+ for ncclCommSplit")
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("eager_init", [True, False])
def test_new_group(self, eager_init: bool):
# Test the optimization of new groups that contain all world
# ranks use the "transparent" `ncclCommSplit` optimization.
store = c10d.FileStore(self.file_name, self.world_size)
device = torch.device(f"cuda:{self.rank % torch.cuda.device_count()}")
c10d.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
device_id=device if eager_init else None,
)
ng = c10d.new_group()
tensor = torch.tensor([self.rank], device=device)
dist.broadcast(tensor, 0)
dist.broadcast(tensor, 0, group=ng)
dist.destroy_process_group()
@requires_nccl_version((2, 18), "Need NCCL 2.18+ for ncclCommSplit")
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@skip_but_pass_in_sandcastle_if(
torch.cuda.nccl.version()[-1] == "x", "NCCL test not for NCCLX"
)
def test_comm_split_subgroup(self):
# Test `ncclCommSplit` for smaller subgroups of the world when
# we've passed a specific device_id to init_process_group.
store = c10d.FileStore(self.file_name, self.world_size)
device = torch.device(f"cuda:{self.rank}")
pg = self._create_process_group_nccl(store, self.opts(), device_id=device)
backend = pg._get_backend(torch.device(device))
tensor = torch.full((1,), self.rank).cuda(device)
original_tensor = tensor.clone()
ng = c10d.new_group([0])
# comm split happens eagerly since device_id is passed to init_process_group.
self.assertEqual(backend.comm_split_count(), 1)
if self.rank == 0:
dist.broadcast(tensor, 0, group=ng)
# no additional comm split happens after a collective.
self.assertEqual(backend.comm_split_count(), 1)
self.assertEqual(tensor, original_tensor)
dist.destroy_process_group()
@requires_nccl_version((2, 18), "Need NCCL 2.18+ for ncclCommSplit")
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_comm_eager_init_subgroup(self):
# Test `ncclCommSplit` for smaller subgroups of the world when
# we've passed a specific device_id to init_process_group.
store = c10d.FileStore(self.file_name, self.world_size)
device = torch.device(f"cuda:{self.rank}")
# default PG comm is not initialized yet
pg = self._create_process_group_nccl(store, self.opts())
backend = pg._get_backend(torch.device(device))
self.assertEqual(backend._is_initialized(), False)
# create a subgroup eagerly
new_group = c10d.new_group([0, 1], device_id=device)
tensor = torch.full((1,), self.rank).cuda(device)
dist.broadcast(tensor, 0, group=new_group)
# the default group should stay lazy
self.assertEqual(backend._is_initialized(), False)
torch.cuda.synchronize()
dist.destroy_process_group()
@requires_nccl_version((2, 18), "Need NCCL 2.18+ for ncclCommSplit")
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_comm_split_group(self):
# Test `ncclCommSplit` for smaller subgroups of the world when
# we've passed a specific device_id to init_process_group.
store = c10d.FileStore(self.file_name, self.world_size)
device = torch.device(f"cuda:{self.rank}")
pg = self._create_process_group_nccl(store, self.opts(), device_id=device)
backend = pg._get_backend(torch.device(device))
tensor = torch.full((1,), self.rank).cuda(device)
# Create subgroup between ranks 0, 1
subg_ranks = [0, 1]
ng1 = c10d.split_group(pg, [subg_ranks])
backend1 = ng1._get_backend(torch.device(device))
# check basic options are the same between parent and child
self.assertEqual(backend.options._timeout, backend1.options._timeout)
self.assertEqual(
backend.options.is_high_priority_stream,
backend1.options.is_high_priority_stream,
)
self.assertEqual(ng1.group_desc, "default_pg:split:0")
# comm split happens eagerly since device_id is passed to init_process_group.
self.assertEqual(backend.comm_split_count(), 1)
# dist.get_process_group_ranks returns the global ranks in the subgroup.
self.assertEqual(
dist.get_process_group_ranks(ng1),
subg_ranks if self.rank in subg_ranks else [],
)
# is part of ng1; otherwise, -1
if dist.get_rank(ng1) >= 0:
dist.broadcast(tensor, dist.get_global_rank(ng1, 0), group=ng1)
self.assertEqual(tensor, torch.full((1,), 0))
ng2 = c10d.split_group(pg, [subg_ranks])
self.assertEqual(ng2.group_desc, "default_pg:split:1")
self.assertEqual(backend.comm_split_count(), 2)
dist.destroy_process_group()
@requires_nccl_version((2, 18), "Need NCCL 2.18+ for ncclCommSplit")
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_non_blocking_init(self):
# Test creating a pg using nonblocking mode but not eagerly
os.environ["TORCH_NCCL_USE_COMM_NONBLOCKING"] = "1"
os.environ["TORCH_NCCL_NONBLOCKING_TIMEOUT"] = "100"
store = c10d.FileStore(self.file_name, self.world_size)
device = self.rank_to_GPU[self.rank][0]
pg = self._create_process_group_nccl(store, self.opts())
backend = pg._get_backend(torch.device(device))
self.assertEqual(backend.comm_split_count(), 0)
reduce_tensor = torch.rand(10, 10, device=device)
# Run an allreduce, which should trigger a comm init for pg
pg.allreduce(reduce_tensor).wait()
new_pg = c10d.new_group()
# even after pg's collective call, new pg's comm is not initialized until its own collectcive calls
self.assertEqual(backend.comm_split_count(), 0)
broadcast_tensor = torch.tensor([self.rank]).cuda(device)
new_pg.broadcast(broadcast_tensor, 0).wait()
self.assertEqual(backend.comm_split_count(), 0)
dist.destroy_process_group()
@requires_nccl_version((2, 18), "Need NCCL 2.18+ for ncclCommSplit")
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_non_blocking_with_eager_init(self):
# Test creating a pg eagerly with nonblocking mode when
# we've passed a specific device_id to init_process_group.
os.environ["TORCH_NCCL_USE_COMM_NONBLOCKING"] = "1"
os.environ["TORCH_NCCL_NONBLOCKING_TIMEOUT"] = "100"
store = c10d.FileStore(self.file_name, self.world_size)
device = torch.device(f"cuda:{self.rank}")
# bound device to triger eager init mode
pg = self._create_process_group_nccl(store, self.opts(), device_id=device)
backend = pg._get_backend(torch.device(device))
self.assertEqual(backend.comm_split_count(), 0)
reduce_tensor = torch.rand(10, 10, device=device)
# Run an allreduce, comm should have already started initilizaing,
# but allreduce is issued to CUDA STREAM only after the initialization is a success
pg.allreduce(reduce_tensor).wait()
new_pg = c10d.new_group()
# new pg's comm is initialized eagerly
self.assertEqual(backend.comm_split_count(), 1)
broadcast_tensor = torch.tensor([self.rank]).cuda(device)
new_pg.broadcast(broadcast_tensor, 0).wait()
self.assertEqual(backend.comm_split_count(), 1)
dist.destroy_process_group()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_non_blocking_p2p(self):
# Test creating a pg using nonblocking mode but not eagerly
os.environ["TORCH_NCCL_USE_COMM_NONBLOCKING"] = "1"
os.environ["TORCH_NCCL_NONBLOCKING_TIMEOUT"] = "100"
store = c10d.FileStore(self.file_name, self.world_size)
device = self.rank_to_GPU[self.rank][0]
self._create_process_group_nccl(store, self.opts())
# Generate the same tensor
send_tensor = torch.ones(10, 10, device=device)
if self.rank == 0:
dist.send(send_tensor, 1)
if self.rank == 1:
recv_tensor = torch.rand(10, 10, device=device)
dist.recv(recv_tensor, 0)
self.assertEqual(send_tensor, recv_tensor)
dist.destroy_process_group()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("eager_init", [True, False])
def test_subgroup_p2p(self, eager_init: bool):
store = c10d.FileStore(self.file_name, self.world_size)
device = torch.device(f"cuda:{self.rank % torch.cuda.device_count()}")
c10d.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
device_id=device if eager_init else None,
)
send_tensor = torch.ones(10, 10, device=device)
group = dist.new_group()
if self.rank == 0:
dist.send(send_tensor, 1, group=group)
if self.rank == 1:
recv_tensor = torch.rand(10, 10, device=device)
dist.recv(recv_tensor, 0, group=group)
self.assertEqual(send_tensor, recv_tensor)
dist.destroy_process_group()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_get_uid(self):
store = c10d.FileStore(self.file_name, self.world_size)
device = torch.device(f"cuda:{self.rank}")
pg = self._create_process_group_nccl(store, self.opts(), device_id=device)
from torch.distributed.distributed_c10d import _get_process_group_uid
self.assertEqual(_get_process_group_uid(pg), 0)
pg_2 = c10d.new_group([0, 1])
self.assertEqual(_get_process_group_uid(pg_2), 1)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_set_process_group_desc(self):
store = c10d.FileStore(self.file_name, self.world_size)
device = torch.device(f"cuda:{self.rank}")
pg_default = self._create_process_group_nccl(
store, self.opts(), device_id=device
)
self.assertEqual(pg_default.group_desc, "default_pg")
pg_1 = c10d.new_group([0, 1], group_desc="test_purpose")
self.assertEqual(pg_1.group_desc, "test_purpose")
pg_2 = c10d.new_group([0, 1])
self.assertEqual(pg_2.group_desc, "undefined")
class DistributedDataParallelTest(
test_c10d_common.CommonDistributedDataParallelTest, MultiProcessTestCase
):
def setUp(self):
super().setUp()
# TORCH_NCCL_BLOCKING_WAIT overrides TORCH_NCCL_ASYNC_ERROR_HANDLING hence tests
# that use TORCH_NCCL_BLOCKING_WAIT will test it as expected.
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1"
self._spawn_processes()
def _get_process_group(self):
store = self._get_store()
c10d.init_process_group(
"nccl", store=store, rank=self.rank, world_size=self.world_size
)
return c10d.distributed_c10d._get_default_group()
def _test_nccl_backend(
self, devices, device_ids, multi_device=False, gradient_as_bucket_view=False
):
process_group = self._get_process_group()
self._test_ddp_with_process_group(
process_group, devices, device_ids, multi_device, gradient_as_bucket_view
)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_nccl_propagate_error_reason(self):
# Need to use TORCH_NCCL_BLOCKING_WAIT and not ASYNC_ERROR_HANDLING,
# otherwise process will be taken down and we can't check for errors.
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "0"
os.environ["TORCH_NCCL_BLOCKING_WAIT"] = "1"
# Need to disable TORCH_NCCL_DUMP_ON_TIMEOUT otherwise this test times out
os.environ["TORCH_NCCL_DUMP_ON_TIMEOUT"] = "0"
store = c10d.FileStore(self.file_name, self.world_size)
# provide sufficient timeout to initialize NCCL comm.
pg = c10d.ProcessGroupNCCL(
store, self.rank, self.world_size, timeout=timedelta(seconds=15)
)
pg_gloo = c10d.ProcessGroupGloo(store, self.rank, self.world_size)
pg.barrier().wait(timedelta(seconds=5))
# Simulate stuckness in rank 0.
if self.rank == 0:
pg_gloo.barrier().wait()
inp = torch.ones(1).cuda(self.rank)
if self.rank != 0:
# Time out due to rank 0 not calling into allreduce.
with self.assertRaises(dist.DistBackendError):
pg.allreduce([inp]).wait(timedelta(seconds=5))
# Now when nonzero rank attempts to use communicator, original failure reason should be logged.
try:
pg.allreduce([torch.ones(2).cuda(self.rank)]).wait()
except dist.DistBackendError as e:
self.assertTrue("aborted" in str(e))
else:
self.fail("Expected error to be raised!")
# Unblock rank 0
pg_gloo.barrier().wait()
# TODO: We can also test that if rank 0 attempts to use the communicator,
# then we should error out with the info that it was aborted due to
# timeout on another rank. Although this would only be the case after
# the watchdog has run on the rank, and there is no reliable way
# to confirm it has run.
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_nccl_backend_multi_device_ids_not_allowed(self):
int_devices = list(range(torch.cuda.device_count()))
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
with self.assertRaisesRegex(
ValueError, "device_ids can only be None or contain a single element."
):
self._test_nccl_backend(devices, int_devices)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_nccl_backend_single_device_module_device_ids_None(self):
self._test_nccl_backend(None, None)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_nccl_backend_single_device_module_empty_device_ids(self):
# This tests the backward compatibility of accepting an empty list as `device_ids`,
# although we no longer document this in favor of the default value of `None`,
# which is consistent with multi-device modules and CPU modules.
self._test_nccl_backend(None, [])
@requires_nccl()
@skip_if_lt_x_gpu(4)
def test_nccl_backend_multi_device_module_device_ids_None(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:2]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_nccl_backend(devices, None, multi_device=True)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_nccl_backend_1gpu_module_device_ids_integer_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_nccl_backend(devices, int_devices)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_nccl_backend_1gpu_module_device_ids_torch_device_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_nccl_backend(devices, devices)
@requires_nccl()
@skip_if_lt_x_gpu(4)
def test_nccl_backend_2gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:2]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_nccl_backend(devices, None, multi_device=True)
@requires_nccl()
@skip_if_lt_x_gpu(8)
def test_nccl_backend_4gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:4]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_nccl_backend(devices, None, multi_device=True)
@requires_nccl()
@skip_if_lt_x_gpu(4)
def test_ddp_multi_device_module_config(self):
gpus = gpus_for_rank(self.world_size)[self.rank]
self.assertTrue(len(gpus) >= 2, "expecting at least 2 gpus per process")
process_group = self._get_process_group()
gpus = gpus[:2]
model = DoubleGpuNet(gpus)
with self.assertRaisesRegex(
ValueError,
"DistributedDataParallel device_ids and output_device arguments only work with "
"single-device/multiple-device GPU modules or CPU modules",
):
ddp_model = DistributedDataParallel(
model, output_device=gpus[1], process_group=process_group
)
with self.assertRaisesRegex(
ValueError, "device_ids can only be None or contain a single element."
):
ddp_model = DistributedDataParallel(
model, device_ids=gpus, process_group=process_group
)
with self.assertRaisesRegex(
ValueError, "input module must be on the same type of devices"
):
model.fc1 = model.fc1.cpu()
ddp_model = DistributedDataParallel(model, process_group=process_group)
model = model.cpu()
with self.assertRaisesRegex(
ValueError, "device_ids can only be None or contain a single element."
):
ddp_model = DistributedDataParallel(
model, device_ids=gpus, process_group=process_group
)
def _test_fp16(self, gradient_as_bucket_view=False):
process_group = self._get_process_group()
gpus = gpus_for_rank(self.world_size)[self.rank]
model = nn.Linear(1, 1, bias=False).cuda(gpus[0]).half()
nn.init.constant_(model.weight, 1)
ddp_model = DistributedDataParallel(
model,
device_ids=[gpus[0]],
process_group=process_group,
bucket_cap_mb=0.001,
gradient_as_bucket_view=gradient_as_bucket_view,
)
# Input 2**15, so that the gradients will overflow with a
# world_size of 2, unless we normalize the gradient by the
# world_size before the reduction
input = torch.tensor([[2**15]]).cuda(gpus[0]).half()
# Step model
ddp_model.train()
output = ddp_model(input)
loss = output.sum()
loss.backward()
self.assertFalse(any(torch.isinf(p.grad).any() for p in ddp_model.parameters()))
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_fp16(self):
self._test_fp16()
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_fp16_grad_is_view(self):
self._test_fp16(gradient_as_bucket_view=True)
def _test_arbitrary_forward_return_value(self, gradient_as_bucket_view=False):
"""
Note: this test can be sped up by only running it on a CPU module
once DistributedDataParallel supports them.
"""
process_group = self._get_process_group()
class ForwardReturnValueModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 10, bias=False)
self.fc2 = nn.Linear(10, 4, bias=False)
self.fc3 = nn.Linear(4, 4, bias=False)
self.relu = nn.ReLU()
def forward(self, x, fn):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
# The first softmax does NOT include fc3 in its autograd graph
# whereas the second softmax DOES. If we pass only the first
# tensor we see in the output to the reducer, it marks the
# gradient for fc3 as ready (because it doesn't show up). If
# downstream uses of this return value choose to differentiate
# against the second output tensor, it would still receive a
# gradient and a callback for this tensor, resulting in a crash.
return fn(
F.softmax(x, dim=1),
F.softmax(self.fc3(x), dim=1),
)
device_id = gpus_for_rank(self.world_size)[self.rank][0]
model = DistributedDataParallel(
ForwardReturnValueModule().float().to(device_id),
device_ids=[device_id],
process_group=process_group,
gradient_as_bucket_view=gradient_as_bucket_view,
)
batch_size = 4
criterion = nn.CrossEntropyLoss()
input = torch.rand([batch_size, 2], dtype=torch.float)
target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(
device_id
)
# Always run "backward" to ensure the reducer is called by autograd.
# If we don't correctly capture the output tensors from the return value,
# the reducer won't see a hook for the unused parameter, and throw an error.
# The correct capture is what we're testing in this function.
def test(box, unbox):
output = model(input, fn=box)
loss = criterion(unbox(output), target)
loss.backward()
# Test with identity return value
test(
box=lambda x, y: (x, y),
unbox=lambda obj: obj[1],
)
# Test with list return value
test(
box=lambda x, y: ["foo", x, "bar", y],
unbox=lambda obj: obj[3],
)
# Test with tuple return value
test(
box=lambda x, y: ("foo", x, "bar", y),
unbox=lambda obj: obj[3],
)
# Test with dict return value
test(
box=lambda x, y: {"foo": "bar", "a": x, "b": y},
unbox=lambda obj: obj["b"],
)
# Test with list with dict return value
test(
box=lambda x, y: ["foo", "bar", {"a": x, "b": y}],
unbox=lambda obj: obj[2]["b"],
)
# Test with dict with list return value
test(
box=lambda x, y: {"foo": "bar", "list": [0, x, 1, y]},
unbox=lambda obj: obj["list"][3],
)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_arbitrary_forward_return_value(self):
self._test_arbitrary_forward_return_value()
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_arbitrary_forward_return_value_grad_is_view(self):
self._test_arbitrary_forward_return_value(gradient_as_bucket_view=True)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_ddp_with_lazy_parameters(self):
process_group = self._get_process_group()
with self.assertRaisesRegex(
RuntimeError, "Modules with uninitialized parameters"
):
DistributedDataParallel(
torch.nn.LazyLinear(10), process_group=process_group
)
def _test_find_unused_parameters_kwarg(self, gradient_as_bucket_view=False):
"""
Note: this test can be sped up by only running it on a CPU module
once DistributedDataParallel supports them.
"""
torch.cuda.set_device(self.rank)
dist.init_process_group(
backend="nccl",
world_size=self.world_size,
rank=self.rank,
init_method=f"file://{self.file_name}",
)
process_group = c10d.distributed_c10d._get_default_group()
class FindUnusedParametersModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 10, bias=False)
self.fc2 = nn.Linear(10, 4, bias=False)
self.fc3 = nn.Linear(4, 4, bias=False)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
# Return the fc3 module so that the caller can invoke it
# outside of the forward function. While this is bad practice,
# we can use it to trigger a reducer error.
return (F.softmax(x, dim=1), self.fc3)
device_id = gpus_for_rank(self.world_size)[self.rank][0]
batch_size = 4
criterion = nn.CrossEntropyLoss()
input = torch.rand([batch_size, 2], dtype=torch.float)
target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(
device_id
)
ddp_model = None
def test_find_unused_parameters(
find_unused_parameters, test_default=False, gradient_as_bucket_view=False
):
if test_default:
model = DistributedDataParallel(
FindUnusedParametersModule().float().to(device_id),
device_ids=[device_id],
process_group=process_group,
gradient_as_bucket_view=gradient_as_bucket_view,
)
else:
model = DistributedDataParallel(
FindUnusedParametersModule().float().to(device_id),
device_ids=[device_id],
process_group=process_group,
find_unused_parameters=find_unused_parameters,
gradient_as_bucket_view=gradient_as_bucket_view,
)
nonlocal ddp_model
ddp_model = model
output, fc3 = model(input)
output = fc3(output)
loss = criterion(output, target)
loss.backward()
# First test that finding unused params under these conditions is to
# trigger an error when `backward` is called (because fc3 is an unused
# parameter and will therefore be marked ready twice).
try:
test_find_unused_parameters(
True, gradient_as_bucket_view=gradient_as_bucket_view
)
except Exception as ex:
self.assertTrue(
str(ex).startswith(
"Expected to mark a variable ready only once.",
)
)
unused_index = 2
unused_index_str = f"Parameter at index {unused_index}"
model = ddp_model.module
for module_name, module in model.named_modules():
if module == model.fc3:
for parameter_name, _ in module.named_parameters(recurse=False):
unused_fqn = f"{module_name}.{parameter_name}"
# Only one such parameter in model.fc3, since bias=False
break
if dist.get_debug_level() != dist.DebugLevel.OFF:
unused_index_str += f" with name {unused_fqn}"
self.assertTrue(unused_index_str in str(ex))
else:
self.fail("Expected exception")
dist.barrier(process_group)
# Then test that the default behavior can be overridden by setting
# `find_unused_parameters=False`.
try:
test_find_unused_parameters(
False, gradient_as_bucket_view=gradient_as_bucket_view
)
except Exception as ex:
self.fail(f"Unexpected exception: {ex}")
# Test find_unused_parameters defaults to False
try:
test_find_unused_parameters(
True, test_default=True, gradient_as_bucket_view=gradient_as_bucket_view
)
except Exception as ex:
self.fail(f"Unexpected exception: {ex}")
# TODO: Combine the following tests once https://github.com/pytorch/pytorch/issues/55967
# is resolved.
@requires_nccl()
@skip_if_lt_x_gpu(2)
@with_dist_debug_levels(levels=["DETAIL"])
def test_find_unused_parameters_kwarg_debug_detail(self):
self._test_find_unused_parameters_kwarg()
@requires_nccl()
@skip_if_lt_x_gpu(2)
@with_dist_debug_levels(levels=["INFO"])
def test_find_unused_parameters_kwarg_debug_info(self):
self._test_find_unused_parameters_kwarg()
@requires_nccl()
@skip_if_lt_x_gpu(2)
@with_dist_debug_levels(levels=["OFF"])
def test_find_unused_parameters_kwarg_debug_off(self):
self._test_find_unused_parameters_kwarg()
@requires_nccl()
@skip_if_lt_x_gpu(2)
@with_dist_debug_levels(levels=["DETAIL"])
def test_find_unused_parameters_kwarg_grad_is_view_debug_detail(self):
self._test_find_unused_parameters_kwarg(gradient_as_bucket_view=True)
@requires_nccl()
@skip_if_lt_x_gpu(2)
@with_dist_debug_levels(levels=["INFO"])
def test_find_unused_parameters_kwarg_grad_is_view_debug_info(self):
self._test_find_unused_parameters_kwarg(gradient_as_bucket_view=True)
@requires_nccl()
@skip_if_lt_x_gpu(2)
@with_dist_debug_levels(levels=["OFF"])
def test_find_unused_parameters_kwarg_grad_is_view_debug_off(self):
self._test_find_unused_parameters_kwarg(gradient_as_bucket_view=True)
def _test_multiple_outputs_multiple_backward(self, gradient_as_bucket_view=False):
"""
Note: this test can be sped up by only running it on a CPU module
once DistributedDataParallel supports them.
"""
process_group = self._get_process_group()
class MultipleOutputModule(nn.Module):
def __init__(self) -> None:
super().__init__()
def define_module():
return nn.Sequential(
nn.Linear(2, 10, bias=False),
nn.ReLU(),
nn.Linear(10, 4, bias=False),
nn.ReLU(),
)
self.module0 = define_module()
self.module1 = define_module()
def forward(self, x):
return (
F.softmax(self.module0(x), dim=1),
F.softmax(self.module1(x), dim=1),
)
device_id = gpus_for_rank(self.world_size)[self.rank][0]
model = DistributedDataParallel(
MultipleOutputModule().float().to(device_id),
device_ids=[device_id],
process_group=process_group,
gradient_as_bucket_view=gradient_as_bucket_view,
)
batch_size = 4
criterion = nn.CrossEntropyLoss()
input = torch.rand([batch_size, 2], dtype=torch.float)
target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(
device_id
)
# Compute loss and gradients for both outputs
output1, output2 = model(input)
loss1 = criterion(output1, target)
loss1.backward()
loss2 = criterion(output2, target)
loss2.backward()
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_multiple_outputs_multiple_backward(self):
self._test_multiple_outputs_multiple_backward()
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_multiple_outputs_multiple_backward_grad_is_view(self):
self._test_multiple_outputs_multiple_backward(gradient_as_bucket_view=True)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_no_grad(self):
"""
Note: this test can be sped up by only running it on a CPU module
once DistributedDataParallel supports them.
"""
process_group = self._get_process_group()
class NoGradModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 10, bias=False)
self.fc2 = nn.Linear(10, 4, bias=False)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
return F.softmax(x, dim=1)
device_id = gpus_for_rank(self.world_size)[self.rank][0]
model = DistributedDataParallel(
NoGradModule().float().to(device_id),
device_ids=[device_id],
process_group=process_group,
)
batch_size = 4
input = torch.rand([batch_size, 2], dtype=torch.float)
def check_no_grads():
for p in model.parameters():
self.assertTrue(p.requires_grad)
self.assertIsNone(p.grad)
# After initialization, no parameter has their gradient set.
check_no_grads()
# Run `forward` function with torch.no_grad()
with torch.no_grad():
output = model(input)
self.assertTrue(isinstance(output, torch.Tensor))
# No parameter should have their gradient set.
check_no_grads()
def _test_accumulate_gradients_module(self, gradient_as_bucket_view=False):
# This is NOT the recommended way to implement accumulating grads, but
# we would like to make sure DDP does not mess up with the underlying
# module.
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
process_group = self._get_process_group()
global_batch_size = self.world_size
model, ddp_model, input, target = self._prepare_single_device_module(
process_group, devices, devices, global_batch_size, gradient_as_bucket_view
)
def step_model(model, input, target):
model.train()
output = model(input)
loss = F.mse_loss(output, target.to(output.device))
loss.backward()
# ensure accumulate grads works with no_grad
with torch.no_grad():
ddp_model.train()
ddp_model.module(input)
# Check two model parameters over 4 iterations.
# Use 4 iterations because we alternate between reducing and
# not reducing and want to make sure we switch both ways.
for iteration in range(4):
step_model(model, input, target)
if iteration % 2 == 0:
# Skip gradients sync without calling prepare_for_backward
step_model(
ddp_model.module,
input[self.rank : (self.rank + 1)],
target[self.rank : (self.rank + 1)],
)
for i, j in zip(model.parameters(), ddp_model.parameters()):
self.assertNotEqual(i.grad, j.grad)
else:
step_model(
ddp_model,
input[self.rank : (self.rank + 1)],
target[self.rank : (self.rank + 1)],
)
for i, j in zip(model.parameters(), ddp_model.parameters()):
self.assertEqual(i.grad, j.grad, rtol=1.3e-06, atol=5e-5)
# Shuffle the input so that DDP input is different
torch.manual_seed(1337 + iteration)
input = input[torch.randperm(global_batch_size)]
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_accumulate_gradients_module(self):
self._test_accumulate_gradients_module()
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_accumulate_gradients_module_with_grad_is_view(self):
self._test_accumulate_gradients_module(gradient_as_bucket_view=True)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_failure_recovery(self):
process_group = self._get_process_group()
# need to create a separate file for the recovered FileStore, because
# the original one will be deleted when destructing the first FileStore.
recovery_filename = self.file_name + "_recovery"
if self.rank == 0:
# the file will be deleted by the recovered FileStore
open(recovery_filename, "w").close()
# not necessary to run barrier here, as DDP will synchronize
class TestModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 10, bias=False)
self.fc2 = nn.Linear(10, 4, bias=False)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
return F.softmax(x, dim=1)
device_id = gpus_for_rank(self.world_size)[self.rank][0]
model = TestModel().float().to(device_id)
ddp = DistributedDataParallel(
model,
device_ids=[device_id],
process_group=process_group,
)
batch_size = 4
criterion = nn.CrossEntropyLoss()
input = torch.rand([batch_size, 2], dtype=torch.float)
target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(
device_id
)
for _ in range(6):
output = ddp(input)
loss = criterion(output, target)
loss.backward()
del ddp
c10d.destroy_process_group(process_group)
store = c10d.FileStore(recovery_filename, self.world_size)
c10d.init_process_group(
"nccl", store=store, rank=self.rank, world_size=self.world_size
)
process_group = c10d.distributed_c10d._get_default_group()
ddp = DistributedDataParallel(
model,
device_ids=[device_id],
process_group=process_group,
)
input = torch.rand([batch_size, 2], dtype=torch.float)
target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(
device_id
)
for _ in range(6):
output = ddp(input)
loss = criterion(output, target)
loss.backward()
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_pass_default_pg(self):
dist.init_process_group(
"nccl",
init_method=f"file://{self.file_name}",
world_size=self.world_size,
rank=self.rank,
)
default_pg = c10d.distributed_c10d._get_default_group()
dist.destroy_process_group(default_pg)
self.assertFalse(dist.is_initialized())
def _test_grad_layout(self, replica_devices, layer_devs, local_batch_size):
process_group = self._get_process_group()
global_batch_size = local_batch_size * self.world_size
# Carry out some trials with small buckets and some with big buckets.
bucketsizes = (0.000001, 25)
# Tuples of lists. Each list describes per-layer characteristics for one trial.
layer_formats = (
[torch.contiguous_format] * 4,
[torch.channels_last] * 2 + [torch.contiguous_format] * 2,
[torch.channels_last] * 4,
)
layer_dtypes = (
[torch.float] * 4,
[torch.float] * 2 + [torch.half] * 2,
[torch.half] * 4,
)
input_dev = layer_devs[0] if isinstance(layer_devs, list) else layer_devs
target_dev = layer_devs[-1] if isinstance(layer_devs, list) else layer_devs
input = torch.randn(
(global_batch_size, 8, 8, 8), device=input_dev, dtype=torch.float
)
target = torch.randn(
(global_batch_size, 8, 4, 4), device=target_dev, dtype=torch.float
)
local_batch_start = self.rank * local_batch_size
local_batch_end = (self.rank + 1) * local_batch_size
# Reducer.cpp sneakily creates one "initial bucket" that ignores the "bucket_cap_mb"
# argument. The following makes sure the initial bucket also complies.
@contextmanager
def first_bucket_size(ddp_bucket_mb):
old_DEFAULT_FIRST_BUCKET_BYTES = dist._DEFAULT_FIRST_BUCKET_BYTES
dist._DEFAULT_FIRST_BUCKET_BYTES = int(ddp_bucket_mb * 1.0e6)
try:
yield
finally:
dist._DEFAULT_FIRST_BUCKET_BYTES = old_DEFAULT_FIRST_BUCKET_BYTES
with torch.backends.cudnn.flags(
enabled=True, deterministic=True, benchmark=False
):
for formats, dtypes, bucketsize in product(
layer_formats, layer_dtypes, bucketsizes
):
with first_bucket_size(bucketsize):
model_msg = f"rank = {self.rank} formats = {formats} dtypes = {dtypes} bucketsize = {bucketsize} "
try:
m = ConvNet(layer_devs, formats, dtypes)
m_ddp = DistributedDataParallel(
copy.deepcopy(m),
device_ids=replica_devices,
process_group=process_group,
bucket_cap_mb=bucketsize,
)
opt = torch.optim.SGD(m.parameters(), lr=0.1)
opt_ddp = torch.optim.SGD(m_ddp.parameters(), lr=0.1)
has_half = any(p.dtype is torch.half for p in m.parameters())
tol = 1.0e-3 if has_half else 1.0e-5
except BaseException:
# Prints case-specific debugging info to narrow down failing case.
print(
"Caught exception during model creation for " + model_msg,
flush=True,
)
raise
# 3 iters: First iter creates grads, second iter retests after rebucketing,
# third iter tries zeroed grads.
for it in range(3):
iter_msg = f"iter = {it} " + model_msg
named_msg = iter_msg
try:
F.mse_loss(m(input).float(), target).backward()
F.mse_loss(
m_ddp(input[local_batch_start:local_batch_end]).float(),
target[local_batch_start:local_batch_end],
).backward()
for i, ((layer_name, m_child), m_ddp_child) in enumerate(
zip(m.named_children(), m_ddp.module.children())
):
named_msg = layer_name + ".weight" + " " + iter_msg
self.assertTrue(
m_child.weight.grad.is_contiguous(
memory_format=formats[i]
),
named_msg,
)
self.assertTrue(
m_ddp_child.weight.grad.is_contiguous(
memory_format=formats[i]
),
named_msg,
)
for j, ((param_name, p), p_ddp) in enumerate(
zip(
m_child.named_parameters(),
m_ddp_child.parameters(),
)
):
named_msg = (
layer_name + "." + param_name + " " + iter_msg
)
self.assertEqual(
p.grad, p_ddp.grad, rtol=tol, atol=tol
)
opt.step()
opt_ddp.step()
if it == 0:
for p, p_ddp in zip(m.parameters(), m_ddp.parameters()):
p.grad = None
p_ddp.grad = None
else:
m.zero_grad()
m_ddp.zero_grad()
except BaseException:
# Makes sure we still get info if an error occurred somewhere other than the asserts.
print(
"Caught exception during iterations at " + named_msg,
flush=True,
)
raise
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_grad_layout_1devicemodule_1replicaperprocess(self):
dev0 = torch.device("cuda:" + str(gpus_for_rank(self.world_size)[self.rank][0]))
# Tells DDP to use just one device.
replica_devices = [dev0]
# Tells _test_grad_layout to construct ConvNet with all layers on this process's first assigned device.
layer_devs = dev0
local_batch_size = 8
self._test_grad_layout(replica_devices, layer_devs, local_batch_size)
@requires_nccl()
@skip_if_lt_x_gpu(4)
@skip_if_rocm_multiprocess
def test_grad_layout_2devicemodule(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:2]
dev0 = torch.device("cuda:" + str(int_devices[0]))
dev1 = torch.device("cuda:" + str(int_devices[1]))
# DDP's default behavior for a multi-device module is "don't replicate."
replica_devices = None
# Tells _test_grad_layout to constructs this process's ConvNet on 2 devices, with 2 layers on each device.
layer_devs = [dev0] * 2 + [dev1] * 2
local_batch_size = 8
self._test_grad_layout(replica_devices, layer_devs, local_batch_size)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_param_layout_mismatch_error(self):
process_group = self._get_process_group()
dev0 = torch.device("cuda:" + str(gpus_for_rank(self.world_size)[self.rank][0]))
layer_devs = dev0
layer_formats = (
[torch.contiguous_format] * 4
if self.rank == 0
else [torch.channels_last] * 4
)
layer_dtypes = [torch.float] * 4
m = ConvNet(layer_devs, layer_formats, layer_dtypes)
if self.rank == 0:
m_ddp = DistributedDataParallel(
m, device_ids=[dev0], process_group=process_group
)
else:
with self.assertRaisesRegex(
RuntimeError,
".* appears not to match strides of the same param in process 0",
):
m_ddp = DistributedDataParallel(
m, device_ids=[dev0], process_group=process_group
)
def _gpu_model_with_ddp_comm_hook(
self,
process_group,
hook=None,
gradient_as_bucket_view=False,
state=None,
static_graph=False,
):
device_id = gpus_for_rank(self.world_size)[self.rank][0]
gpu_model = DistributedDataParallel(
ModuleForDdpCommHook().to(device_id),
device_ids=[device_id],
process_group=process_group,
gradient_as_bucket_view=gradient_as_bucket_view,
static_graph=static_graph,
)
# Register a DDP communication hook if any.
if hook is not None:
gpu_model.register_comm_hook(state, hook)
return gpu_model
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_ddp_comm_hook_future_passing_gpu_nccl(self):
"""
This unit test verifies whether the Future object is passed properly using nccl backend.
The hook callback function creates a Future object and sets a value to it.
"""
process_group = self._get_process_group()
# Get GPU model with simple_hook registered.
gpu_model = self._gpu_model_with_ddp_comm_hook(process_group, self._simple_hook)
# check whether the grads are equal to what simple_hook's then callback returns.
# without the comm_hook, result would be 0.25 * torch.ones(2, 2).
self._run_and_verify_hook(gpu_model, 8, 2 * torch.ones(2, 2))
def _test_ddp_comm_hook_allreduce_hook_nccl(
self, gradient_as_bucket_view=False, static_graph=False
):
"""
This unit test verifies whether a DDP communication hook that just calls
allreduce gives the same result with the case of no hook registered.
Without the then callback, the future_value in reducer is no longer
a PyObject, and this unit test verifies future_value is properly checked.
"""
process_group = self._get_process_group()
def allreduce_hook(
state: object, bucket: dist.GradBucket
) -> torch.futures.Future[torch.Tensor]:
tensors = [bucket.buffer() / self.world_size]
return (
process_group.allreduce(tensors)
.get_future()
.then(lambda fut: fut.value()[0])
)
# Get GPU model with allreduce_hook registered.
gpu_model = self._gpu_model_with_ddp_comm_hook(
process_group, allreduce_hook, gradient_as_bucket_view, static_graph
)
# check whether the grads are equal to what DDP without hook would return.
self._run_and_verify_hook(gpu_model, 8, 0.25 * torch.ones(2, 2))
def _test_default_ddp_comm_hooks_nccl(self, gradient_as_bucket_view=False):
"""
This unit test verifies whether default Python DDP communication hooks ALLREDUCE, FP16_COMPRESS
and BF16_COMPRESS, can give the same result with the case of no hook registered.
"""
process_group = self._get_process_group()
# For these default DDP comm hooks, the only state is process group.
state = process_group
hook_options = [default.allreduce_hook, default.fp16_compress_hook]
if (
not TEST_WITH_ROCM
and BFLOAT16_AVAILABLE
and c10d.is_nccl_available()
and torch.cuda.nccl.version() >= (2, 10)
):
hook_options.append(default.bf16_compress_hook)
for hook in hook_options:
# Get GPU model with the hook registered.
# The first arg 'process_group' is used for initializing the test environment,
# so it cannot be replaced by 'state', although they have the same value.
gpu_model = self._gpu_model_with_ddp_comm_hook(
process_group, hook, gradient_as_bucket_view, state
)
# check whether the grads are equal to what DDP without hook would return.
self._run_and_verify_hook(gpu_model, 8, 0.25 * torch.ones(2, 2))
def _test_fp16_compress_wrapper(self, gradient_as_bucket_view=False):
"""
This unit test verifies whether wrapping the ALLREDUCE and POWER_SGD hooks with
the FP16_WRAPPER can give the same result as when there is no hook registered.
"""
process_group = self._get_process_group()
powerSGD_state = powerSGD.PowerSGDState(process_group=process_group)
hook_args = [
(powerSGD.powerSGD_hook, powerSGD_state),
(default.allreduce_hook, process_group),
]
for hook, state in hook_args:
gpu_model = self._gpu_model_with_ddp_comm_hook(
process_group,
default.fp16_compress_wrapper(hook),
gradient_as_bucket_view,
state,
)
# check whether the grads are equal to what DDP without hook would return.
self._run_and_verify_hook(gpu_model, 8, 0.25 * torch.ones(2, 2))
def _test_bf16_compress_wrapper(self, gradient_as_bucket_view=False):
"""
This unit test verifies whether wrapping the ALLREDUCE and POWER_SGD hooks with
the BF16_WRAPPER can give the same result as when there is no hook registered.
"""
process_group = self._get_process_group()
powerSGD_state = powerSGD.PowerSGDState(process_group=process_group)
hook_args = [
(powerSGD.powerSGD_hook, powerSGD_state),
(default.allreduce_hook, process_group),
]
for hook, state in hook_args:
gpu_model = self._gpu_model_with_ddp_comm_hook(
process_group,
default.bf16_compress_wrapper(hook),
gradient_as_bucket_view,
state,
)
# check whether the grads are equal to what DDP without hook would return.
self._run_and_verify_hook(gpu_model, 8, 0.25 * torch.ones(2, 2))
def _test_powerSGD_ddp_comm_hook_nccl(self, gradient_as_bucket_view=False):
"""
This unit test verifies whether Python DDP communication hook POWER_SGD
can give the same result with the case of no hook registered.
"""
process_group = self._get_process_group()
# Get GPU model with the hook registered.
# Test the hook with different algorithmic configs.
for use_error_feedback, warm_start, batch_tensors_with_same_shape in product(
[True, False],
[True, False],
[True, False],
):
state = powerSGD.PowerSGDState(
process_group=process_group,
matrix_approximation_rank=1,
use_error_feedback=use_error_feedback,
warm_start=warm_start,
batch_tensors_with_same_shape=batch_tensors_with_same_shape,
)
for hook in [powerSGD.powerSGD_hook, powerSGD.batched_powerSGD_hook]:
gpu_model = self._gpu_model_with_ddp_comm_hook(
process_group, hook, gradient_as_bucket_view, state
)
# check whether the grads are equal to what DDP without hook would return.
self._run_and_verify_hook(gpu_model, 8, 0.25 * torch.ones(2, 2))
def _test_builtin_ddp_comm_hooks_nccl(self, gradient_as_bucket_view=False):
"""
This unit test verifies whether built-in C++ DDP communication hooks ALLREDUCE and FP16_COMPRESS
can give the same result with the case of no hook registered.
"""
process_group = self._get_process_group()
for comm_hook_type in [
dist.BuiltinCommHookType.ALLREDUCE,
dist.BuiltinCommHookType.FP16_COMPRESS,
]:
# Get GPU model with the built-in communication hook.
gpu_model = self._gpu_model_with_builtin_ddp_comm_hook(
process_group, comm_hook_type, gradient_as_bucket_view
)
# check whether the grads are equal to what DDP without hook would return.
self._run_and_verify_hook(gpu_model, 8, 0.25 * torch.ones(2, 2))
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_ddp_comm_hook_allreduce_hook_nccl(self):
self._test_ddp_comm_hook_allreduce_hook_nccl()
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_default_ddp_comm_hooks_nccl(self):
self._test_default_ddp_comm_hooks_nccl()
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_fp16_compress_wrapper_nccl(self):
self._test_fp16_compress_wrapper()
@requires_nccl()
@requires_nccl_version((2, 10), "Need NCCL 2.10+ for BF16_COMPRESS")
@skip_but_pass_in_sandcastle_if(
not BFLOAT16_AVAILABLE,
"BFloat16 is only supported by CUDA 11+",
)
@skip_if_lt_x_gpu(2)
def test_bf16_compress_wrapper_nccl(self):
self._test_bf16_compress_wrapper()
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_builtin_ddp_comm_hooks_nccl(self):
self._test_builtin_ddp_comm_hooks_nccl()
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_powerSGD_ddp_comm_hook_nccl(self):
self._test_powerSGD_ddp_comm_hook_nccl()
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_ddp_comm_hook_allreduce_hook_nccl_grad_is_view(self):
self._test_ddp_comm_hook_allreduce_hook_nccl(gradient_as_bucket_view=True)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_ddp_comm_hook_allreduce_hook_nccl_static_graph(self):
self._test_ddp_comm_hook_allreduce_hook_nccl(static_graph=True)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_default_ddp_comm_hooks_nccl_is_view(self):
self._test_default_ddp_comm_hooks_nccl(gradient_as_bucket_view=True)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_fp16_compress_wrapper_is_view(self):
self._test_fp16_compress_wrapper(gradient_as_bucket_view=True)
@requires_nccl()
@requires_nccl_version((2, 10), "Need NCCL 2.10+ for BF16_COMPRESS")
@skip_but_pass_in_sandcastle_if(
not BFLOAT16_AVAILABLE,
"BFloat16 is only supported by CUDA 11+",
)
@skip_if_lt_x_gpu(2)
def test_bf16_compress_wrapper_is_view(self):
self._test_bf16_compress_wrapper(gradient_as_bucket_view=True)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_builtin_ddp_comm_hooks_nccl_grad_is_view(self):
self._test_builtin_ddp_comm_hooks_nccl(gradient_as_bucket_view=True)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_powerSGD_ddp_comm_hook_nccl_grad_is_view(self):
self._test_powerSGD_ddp_comm_hook_nccl(gradient_as_bucket_view=True)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_ddp_comm_hook_allreduce_with_then_hook_nccl(self):
"""
This unit test verifies whether a DDP communication hook that calls allreduce and then
multiplies the result by ten and divides by two gives the expected result.
"""
process_group = self._get_process_group()
def allreduce_with_then_hook(
state: object, bucket: dist.GradBucket
) -> torch.futures.Future[torch.Tensor]:
tensors = [bucket.buffer() / self.world_size]
fut = process_group.allreduce(tensors).get_future()
def mult(fut):
# Multiply the result by 10.
return 10 * fut.value()[0]
def div(fut):
# Divide the result by 2.
return 0.5 * fut.value()
return fut.then(mult).then(div)
# Get GPU model with allreduce_with_then_hook registered.
gpu_model = self._gpu_model_with_ddp_comm_hook(
process_group, allreduce_with_then_hook
)
# check whether the grads are equal to what allreduce returns multiplied by 5.
# without the comm_hook, result would be still 0.25 * torch.ones(2, 2).
self._run_and_verify_hook(gpu_model, 8, 1.25 * torch.ones(2, 2))
class AcceptsParam(torch.nn.Module):
def __init__(self, p, factor):
super().__init__()
self.a = p
self.f = factor
def forward(self, input):
return input + self.a * self.f
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_ddp_weight_sharing(self):
process_group = self._get_process_group()
size = 2048 * 2048
dev = self.rank
world = self.world_size
p = torch.nn.Parameter(torch.randn(size, requires_grad=True))
for try_set_to_none, use_bucket_view in product((False, True), (False, True)):
m = torch.nn.Sequential(
self.AcceptsParam(p, dev + 1), self.AcceptsParam(p, dev + 1)
).cuda(dev)
m = torch.nn.parallel.DistributedDataParallel(
m,
bucket_cap_mb=1,
gradient_as_bucket_view=use_bucket_view,
device_ids=[dev],
process_group=process_group,
)
for i in range(3):
m.zero_grad(set_to_none=try_set_to_none)
m(1).sum().backward()
# Each param value is multiplied by "rank + 1" twice in forward, so the grad
# values produced by a particular rank should be 2. * (rank + 1).
# Summing these over ranks and dividing by world size gives the expected result:
analytic = torch.full_like(
p, 2.0 * (world * (world + 1.0) / 2.0) / world, device=dev
)
for name, p in m.named_parameters():
self.assertEqual(
p.grad,
analytic,
"mismatch at "
+ name
+ ".grad for "
+ f"set_to_none = {try_set_to_none}, use_bucket_view = {use_bucket_view}",
)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_ddp_packed_sequence(self):
"""
Tests that DDP with ``device_ids`` specified can run a forward and
backward pass with ``PackedSequence`` s with parity compared to a local
version of the model.
"""
store = c10d.FileStore(self.file_name, self.world_size)
process_group = dist.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
seqs = ["sequence_sequence", "seq", "sequence"]
vocab = ["<pad>"] + sorted({ch for seq in seqs for ch in seq})
vectorized_seqs = [[vocab.index(tok) for tok in seq] for seq in seqs]
# Set the seed to make the embedding and LSTM deterministic (even
# across ranks since DDP broadcasts parameters from rank 0)
torch.manual_seed(0)
embed = nn.Embedding(len(vocab), 4) # keep on CPU
lstm = nn.LSTM(input_size=4, hidden_size=2, batch_first=True).to(self.rank)
lstm_ddp = DistributedDataParallel(
copy.deepcopy(lstm),
device_ids=[self.rank],
process_group=process_group,
)
for p1, p2 in zip(lstm.parameters(), lstm_ddp.module.parameters()):
self.assertEqual(p1, p2)
seq_lengths = torch.LongTensor(list(map(len, vectorized_seqs)))
seq_tensor = torch.Tensor(
torch.zeros((len(vectorized_seqs), seq_lengths.max()))
).long()
for i, (seq, seq_len) in enumerate(zip(vectorized_seqs, seq_lengths)):
seq_tensor[i, :seq_len] = torch.LongTensor(seq)
seq_lengths, permutation_idx = seq_lengths.sort(0, descending=True)
seq_tensor = seq_tensor[permutation_idx]
embedded_seq_tensor = embed(seq_tensor)
packed_input = torch.nn.utils.rnn.pack_padded_sequence(
embedded_seq_tensor,
seq_lengths,
batch_first=True,
)
packed_input_ddp = torch.nn.utils.rnn.pack_padded_sequence(
embedded_seq_tensor.detach().clone(),
seq_lengths,
batch_first=True,
)
# Move the input to GPU explicitly for the local model
packed_output, (ht, ct) = lstm(packed_input.to(self.rank))
# Let DDP move the input to GPU internally
packed_output_ddp, (ht_ddp, ct_ddp) = lstm_ddp(packed_input_ddp)
self.assertEqual(packed_output.data, packed_output_ddp.data)
self.assertEqual(ht, ht_ddp)
self.assertEqual(ct, ct_ddp)
packed_output.data.sum().backward()
packed_output_ddp.data.sum().backward()
for p1, p2 in zip(lstm.parameters(), lstm_ddp.parameters()):
self.assertEqual(p1.grad, p2.grad)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_channels_last_contig(self):
process_group = self._get_process_group()
device = torch.device(f"cuda:{self.rank}")
tensor = torch.ones((2, 16, 768, 1152), dtype=torch.float32, device=device).to(
memory_format=torch.channels_last
)
process_group.broadcast([tensor]).wait()
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_ddp_complex_params(self):
class FFTModel(nn.Module):
def __init__(self, hin, win, n_features):
super().__init__()
self.hin = hin
self.win = win
self.weight = nn.Parameter(
torch.ones(
(n_features, n_features, hin, win // 2 + 1), dtype=torch.cfloat
)
)
def forward(self, x):
xc = torch.fft.rfft2(
x, s=(self.hin, self.win), dim=(-2, -1), norm="ortho"
)
xcw = torch.einsum("nchw,cohw->nohw", xc, self.weight)
x = torch.fft.irfft2(xcw, dim=(-2, -1), norm="ortho")
return x
process_group = self._get_process_group()
device_id = gpus_for_rank(self.world_size)[self.rank][0]
N, C, H, W = 1, 16, 64, 64
ddp_model = DistributedDataParallel(
FFTModel(hin=H, win=W, n_features=C).to(device_id),
device_ids=[device_id],
process_group=process_group,
)
optimizer = torch.optim.Adam(ddp_model.parameters(), lr=0.001)
inp = torch.ones((N, C, H, W), dtype=torch.float32)
# train step
out = ddp_model(inp)
loss = torch.sum(out)
loss.backward()
optimizer.step()
torch.cuda.synchronize(device=device_id)
class WorkHookTest(MultiProcessTestCase):
@property
def world_size(self):
return 2
def setUp(self):
super().setUp()
# set TORCH_NCCL_ENABLE_TIMING to enable timing for CUDAEvents
# in ProcessGroup Work
os.environ["TORCH_NCCL_ENABLE_TIMING"] = "1"
self._spawn_processes()
def tearDown(self):
super().tearDown()
del os.environ["TORCH_NCCL_ENABLE_TIMING"]
try:
os.remove(self.file_name)
except OSError:
pass
def _get_store(self):
return dist.FileStore(self.file_name, self.world_size)
def _get_process_group(self):
store = self._get_store()
c10d.init_process_group(
"nccl", store=store, rank=self.rank, world_size=self.world_size
)
return c10d.distributed_c10d._get_default_group()
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_on_completion_hook_broadcast(self):
pg = self._get_process_group()
num_hook_fired = 0
durations: List[float] = []
def hook(work_info: torch._C._distributed_c10d.WorkInfo):
nonlocal num_hook_fired, durations
num_hook_fired += 1
durations.append(work_info.active_duration.total_seconds())
pg._register_on_completion_hook(hook)
tensor = torch.ones([2, 3]).cuda(self.rank) * self.rank
pg.broadcast([tensor]).wait()
pg.broadcast([tensor]).wait()
# N.B.: destroy_process_group is necessary to wait for
# all pending works to finish.
c10d.destroy_process_group(pg)
self.assertEqual(num_hook_fired, 2)
self.assertEqual(len(durations), 2)
for duration in durations:
self.assertTrue(duration > 0)
self.assertEqual(tensor, torch.zeros([2, 3]).cuda(self.rank))
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_on_completion_hook_mixed_ops(self):
pg = self._get_process_group()
num_hook_fired = 0
durations: List[float] = []
def hook(work_info: torch._C._distributed_c10d.WorkInfo):
nonlocal num_hook_fired, durations
num_hook_fired += 1
durations.append(work_info.active_duration.total_seconds())
pg._register_on_completion_hook(hook)
tensor = torch.ones([2, 3]).cuda(self.rank)
tensor_list = [torch.empty_like(tensor) for _ in range(self.world_size)]
# intentionally using async ops.
pg.allreduce(tensor)
pg.allgather(tensor_list, tensor)
pg.allreduce(tensor)
# N.B.: destroy_process_group is necessary to wait for
# all pending works to finish.
c10d.destroy_process_group(pg)
self.assertEqual(num_hook_fired, 3)
self.assertEqual(len(durations), 3)
for duration in durations:
self.assertTrue(duration > 0)
self.assertEqual(
tensor,
torch.ones([2, 3]).cuda(self.rank) * self.world_size * self.world_size,
)
self.assertEqual(
tensor_list,
[
torch.ones([2, 3]).cuda(self.rank) * self.world_size
for _ in range(self.world_size)
],
)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_on_completion_hook_with_ddp(self):
pg = self._get_process_group()
num_hook_fired: Dict[int, int] = {}
durations: Dict[OpType, List[float]] = {}
def hook(work_info: torch._C._distributed_c10d.WorkInfo):
nonlocal num_hook_fired, durations
op_type = work_info.op_type
if op_type not in num_hook_fired:
num_hook_fired[op_type] = 0
durations[op_type] = []
num_hook_fired[op_type] += 1
durations[op_type].append(work_info.active_duration.total_seconds())
pg._register_on_completion_hook(hook)
nlayers = 10
net = nn.Sequential(
*[nn.Linear(1000, 1000, bias=False) for _ in range(nlayers)]
).to(self.rank)
ddp = DistributedDataParallel(
net,
device_ids=[self.rank],
process_group=pg,
bucket_cap_mb=1,
)
pg._wait_for_pending_works()
# DDP is expected to synchronize model parameter by broadcasting
# from rank0 to other ranks. However, this is DDP's internal implementation,
# which is subject to change in future versions.
self.assertTrue(num_hook_fired[OpType.BROADCAST] > 0)
ctor_allreduce = (
num_hook_fired[OpType.ALLREDUCE]
if OpType.ALLREDUCE in num_hook_fired
else 0
)
x = torch.zeros(2, 1000).cuda(self.rank)
ddp(x).sum().backward()
c10d.destroy_process_group(pg)
self.assertTrue(OpType.ALLREDUCE in num_hook_fired)
# The number of allreduce ops depend on DDP internal implementation, but
# there should be at least one allreduce.
self.assertTrue(num_hook_fired[OpType.ALLREDUCE] - ctor_allreduce > 0)
self.assertTrue(all(duration > 0 for duration in chain(*(durations.values()))))
# Not testing FSDP due to https://github.com/pytorch/pytorch/issues/90848.
# We cannot disable workCleanupLoop() as hooks are fired in that thread.
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_on_completion_hook_all_gather_object(self):
torch.cuda.set_device(self.rank)
pg = self._get_process_group()
num_hook_fired: Dict[int, int] = {}
durations: Dict[OpType, List[float]] = {}
def hook(work_info: torch._C._distributed_c10d.WorkInfo):
nonlocal num_hook_fired, durations
op_type = work_info.op_type
if op_type not in num_hook_fired:
num_hook_fired[op_type] = 0
durations[op_type] = []
num_hook_fired[op_type] += 1
durations[op_type].append(work_info.active_duration.total_seconds())
pg._register_on_completion_hook(hook)
obj = {"rank": self.rank, "world_size": self.world_size}
obj_list = [None for _ in range(self.world_size)]
c10d.all_gather_object(obj_list, obj, group=pg)
for r, o in enumerate(obj_list):
self.assertTrue(isinstance(o, dict))
self.assertTrue(set(o.keys()), {"rank", "world_size"})
self.assertEqual(o["rank"], r)
self.assertEqual(o["world_size"], self.world_size)
c10d.destroy_process_group(pg)
self.assertTrue(OpType.ALLGATHER in num_hook_fired)
self.assertEqual(len(num_hook_fired), 1)
# two allgathers, one for size and another for values
self.assertEqual(num_hook_fired[OpType.ALLGATHER], 2)
self.assertTrue(all(duration > 0 for duration in durations[OpType.ALLGATHER]))
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_on_completion_hook_seq(self):
pg = self._get_process_group()
num_hook_fired = 0
seq: int = -1
work: int = 0
def hook(work_info: torch._C._distributed_c10d.WorkInfo):
nonlocal num_hook_fired, seq
num_hook_fired += 1
seq = work_info.seq
pg._register_on_completion_hook(hook)
tensor = torch.ones([2, 3]).cuda(self.rank) * self.rank
work_count = 3
for i in range(work_count):
work += 1
pg.broadcast([tensor]).wait()
# N.B.: destroy_process_group is necessary to wait for
# all pending works to finish.
c10d.destroy_process_group(pg)
self.assertEqual(num_hook_fired, work_count)
self.assertEqual(work, seq)
class NcclErrorHandlingTest(MultiProcessTestCase):
def setUp(self):
super().setUp()
# Need to skip return code checking for these tests since the child
# processes don't exit cleanly.
self.skip_return_code_checks = [
self.test_nccl_errors_blocking_abort.__wrapped__,
self.test_nccl_errors_blocking_sigkill.__wrapped__,
self.test_nccl_errors_blocking_sigterm.__wrapped__,
self.test_nccl_errors_blocking_nonzero_exit.__wrapped__,
]
# TORCH_NCCL_BLOCKING_WAIT overrides TORCH_NCCL_ASYNC_ERROR_HANDLING hence tests
# that use TORCH_NCCL_BLOCKING_WAIT will test it as expected.
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1"
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
@property
def op_timeout_sec(self):
return 3
@property
def world_size(self):
return 3
@property
def blocking_wait_error_msg(self):
return "timeout"
def _run_all_reduce(self, pg):
pg.allreduce(torch.rand(10).cuda(self.rank))
@requires_nccl()
@requires_nccl_version((2, 4, 0), "Need NCCL 2.4+ for error checking")
@skip_if_lt_x_gpu(3)
@skip_if_rocm_multiprocess
@skip_but_pass_in_sandcastle("Test does not pass when run locally")
def test_nccl_errors_nonblocking(self):
# Note: we unset and restore TORCH_NCCL_ASYNC_ERROR_HANDLING for this test
# since test_c10d_common runs with async error handling by default, but this
# tests behavior when it is not enabled.
prev_nccl_async_error_handling = os.environ.get(
"TORCH_NCCL_ASYNC_ERROR_HANDLING", None
)
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "0"
store = c10d.FileStore(self.file_name, self.world_size)
process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size)
process_group.allreduce(torch.rand(10).cuda(self.rank))
if self.rank == 0:
# This allreduce does not block Python thread as allreduce enqueues
# the cuda operation, and then wait only blocks the current cuda
# stream.
work = process_group.allreduce(torch.rand(10).cuda(self.rank))
work.wait()
# Now the work scheduled next should hang forever since the previous
# allreduce will never complete.
t = threading.Thread(target=self._run_all_reduce, args=(process_group,))
t.daemon = True
t.start()
t.join(int(get_timeout(self.id()) / 5))
self.assertTrue(t.is_alive())
if prev_nccl_async_error_handling is not None:
os.environ[
"TORCH_NCCL_ASYNC_ERROR_HANDLING"
] = prev_nccl_async_error_handling
def _test_nccl_errors_blocking(self, func):
store = c10d.FileStore(self.file_name, self.world_size)
process_group = c10d.ProcessGroupNCCL(
store,
self.rank,
self.world_size,
timeout=timedelta(seconds=10),
)
process_group.allreduce(torch.rand(10).cuda(self.rank))
if self.rank == 0:
work = process_group.allreduce(torch.rand(10).cuda(self.rank))
with self.assertRaisesRegex(dist.DistBackendError, ""):
# It seems the error message would be different depending on
# whether the test is run on CI machine and devGPU. Skipping
# the error message check to make both sides happy.
work.wait(timeout=timedelta(seconds=self.op_timeout_sec))
# Run some GPU operations to make sure cuda has not gotten stuck.
# It was observed cuda could get stuck if NCCL communicators were
# not properly aborted before throwing RuntimeError.
a = torch.rand(10).cuda(self.rank)
elif self.rank == 1:
# Clean up structures (ex: files for FileStore before going down)
del process_group
func()
def _test_barrier_error(self):
store = c10d.FileStore(self.file_name, self.world_size)
process_group = c10d.ProcessGroupNCCL(
store,
self.rank,
self.world_size,
timeout=timedelta(seconds=10),
)
process_group.barrier().wait()
if self.rank == 0:
with self.assertRaisesRegex(dist.DistBackendError, ""):
# It seems the error message would be different depending on
# whether the test is run on CI machine and devGPU. Skipping
# the error message check to make both sides happy.
process_group.barrier().wait(
timeout=timedelta(seconds=self.op_timeout_sec)
)
@with_nccl_blocking_wait
@requires_nccl()
@requires_nccl_version((2, 4, 0), "Need NCCL 2.4+ for error checking")
@skip_if_lt_x_gpu(3)
@skip_if_rocm_multiprocess
def test_nccl_errors_blocking_clean_exit(self):
self._test_nccl_errors_blocking(lambda: sys.exit(0))
@with_nccl_blocking_wait
@requires_nccl()
@requires_nccl_version((2, 4, 0), "Need NCCL 2.4+ for error checking")
@skip_if_lt_x_gpu(3)
@skip_if_rocm_multiprocess
def test_nccl_errors_blocking_nonzero_exit(self):
self._test_nccl_errors_blocking(lambda: sys.exit(1))
@with_nccl_blocking_wait
@requires_nccl()
@requires_nccl_version((2, 4, 0), "Need NCCL 2.4+ for error checking")
@skip_if_lt_x_gpu(3)
@skip_if_rocm_multiprocess
@skip_but_pass_in_sandcastle(
"Frequently times out see https://github.com/pytorch/pytorch/issues/58920"
)
def test_nccl_errors_blocking_abort(self):
self._test_nccl_errors_blocking(lambda: os.abort())
@with_nccl_blocking_wait
@requires_nccl()
@requires_nccl_version((2, 4, 0), "Need NCCL 2.4+ for error checking")
@skip_if_lt_x_gpu(3)
@skip_if_rocm_multiprocess
def test_nccl_errors_blocking_sigkill(self):
self._test_nccl_errors_blocking(lambda: os.kill(os.getpid(), signal.SIGKILL))
@with_nccl_blocking_wait
@requires_nccl()
@requires_nccl_version((2, 4, 0), "Need NCCL 2.4+ for error checking")
@skip_if_lt_x_gpu(3)
@skip_if_rocm_multiprocess
def test_nccl_errors_blocking_sigterm(self):
self._test_nccl_errors_blocking(lambda: os.kill(os.getpid(), signal.SIGTERM))
@with_nccl_blocking_wait
@requires_nccl()
@requires_nccl_version((2, 4, 0), "Need NCCL 2.4+ for error checking")
@skip_if_lt_x_gpu(3)
def test_nccl_blocking_wait_with_barrier(self):
self._test_barrier_error()
@requires_nccl()
@requires_nccl_version((2, 4, 0), "Need NCCL 2.4+ for error checking")
@skip_if_lt_x_gpu(3)
def test_nccl_non_blocking_wait_with_barrier(self):
# test the barrier behavior in the non blocking wait setting
prev_nccl_async_error_handling = os.environ.get(
"TORCH_NCCL_ASYNC_ERROR_HANDLING", None
)
# avoid watchdog thread interference
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "0"
self._test_barrier_error()
if prev_nccl_async_error_handling is not None:
os.environ[
"TORCH_NCCL_ASYNC_ERROR_HANDLING"
] = prev_nccl_async_error_handling
@requires_nccl()
@requires_nccl_version((2, 4, 0), "Need NCCL 2.4+ for error checking")
@skip_if_lt_x_gpu(3)
def test_get_future_result(self):
def assert_fut_success(fut):
self.assertEqual(WorkResult(fut.value()), WorkResult.SUCCESS)
# test the barrier behavior in the non blocking wait setting
prev_nccl_async_error_handling = os.environ.get(
"TORCH_NCCL_ASYNC_ERROR_HANDLING", None
)
# avoid watchdog thread interference
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "0"
store = c10d.FileStore(self.file_name, self.world_size)
process_group = c10d.ProcessGroupNCCL(
store,
self.rank,
self.world_size,
timeout=timedelta(seconds=2),
)
barrier_work = process_group.barrier()
barrier_work.wait()
barrier_result = barrier_work.get_future_result().wait()
self.assertEqual(WorkResult(barrier_result), WorkResult.SUCCESS)
ar_work = process_group.allreduce(torch.rand(10).cuda(self.rank))
ar_work.wait()
fut = ar_work.get_future_result()
# test adding a callback function
fut.then(assert_fut_success)
if self.rank == 0:
work = process_group.allreduce(torch.rand(10).cuda(self.rank))
work.wait()
result = work.get_future_result().wait()
self.assertEqual(WorkResult(result), WorkResult.TIMEOUT)
else:
# other ranks not exiting before rank 0 timeout, this is to avoid
# nccl error happening before rank 0 timeouts
time.sleep(4)
# Mimicing all ranks sensing the timeout, abort
process_group.abort()
if prev_nccl_async_error_handling is not None:
os.environ[
"TORCH_NCCL_ASYNC_ERROR_HANDLING"
] = prev_nccl_async_error_handling
def _run_invalid_nccl_blocking_wait_env(self, val):
os.environ["TORCH_NCCL_BLOCKING_WAIT"] = val
store = c10d.FileStore(self.file_name, self.world_size)
with self.assertRaises(RuntimeError):
process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size)
@requires_nccl()
@skip_if_lt_x_gpu(3)
def test_invalid_nccl_blocking_wait_env(self):
self._run_invalid_nccl_blocking_wait_env("abc")
self._run_invalid_nccl_blocking_wait_env("-1")
self._run_invalid_nccl_blocking_wait_env("2147483647")
self._run_invalid_nccl_blocking_wait_env("4294967295")
@with_nccl_blocking_wait
@requires_nccl()
@requires_gloo()
@skip_if_lt_x_gpu(3)
def test_nccl_timeout(self):
store = c10d.FileStore(self.file_name, self.world_size)
# Initialize process_group.
process_group = c10d.ProcessGroupNCCL(
store, self.rank, self.world_size, timeout=timedelta(seconds=10)
)
# Control gloo pg used as go-ahead signal/barrier
# to coordinate btwn ranks.
pg_gloo = c10d.ProcessGroupGloo(store, self.rank, self.world_size)
failed_collective_timeout = timedelta(milliseconds=100)
process_group.allreduce(torch.rand(10).cuda(self.rank)).wait(
timeout=timedelta(seconds=5)
)
if self.rank == 0:
# This should timeout in about 1 second.
# Watchdog may abort timed out work resulting in NCCL error instead of operation timed out.
with self.assertRaisesRegex(
dist.DistBackendError, self.blocking_wait_error_msg
):
process_group.allreduce(torch.rand(10).cuda(self.rank)).wait(
timeout=failed_collective_timeout
)
# Now do a barrier to tell other rank to go ahead.
pg_gloo.barrier().wait()
else:
# Wait on rank 0 to fail.
try:
pg_gloo.barrier().wait()
except Exception as e:
raise ValueError(
f"Rank {self.rank} barrier timed out waiting for rank 0 with error: {str(e)}"
) from e
class NcclUserBufferRegistrationTest(MultiProcessTestCase):
def createNcclAllocator(self):
nccl_allocator_source = """
#include <torch/extension.h>
#include <nccl.h>
#include <iostream>
extern "C" {
// Note that windows needs __declspec(dllexport): https://stackoverflow.com/a/24575865
C10_EXPORT void* nccl_alloc(size_t size, int device, void* stream) {
std::cout << "Using ncclMemAlloc" << std::endl;
void* ptr;
ncclResult_t err = ncclMemAlloc(&ptr, size);
return ptr;
}
C10_EXPORT void nccl_free(void* ptr, size_t size, int device, void* stream) {
std::cout << "Using ncclMemFree" << std::endl;
ncclResult_t err = ncclMemFree(ptr);
}
}
"""
nccl_allocator_libname = "nccl_allocator"
nccl_allocator = load_inline(
name=nccl_allocator_libname,
cpp_sources=nccl_allocator_source,
with_cuda=True,
extra_ldflags=["-lnccl"],
is_python_module=False,
keep_intermediates=False,
verbose=True,
)
return nccl_allocator
def setUp(self):
super().setUp()
# TORCH_NCCL_BLOCKING_WAIT overrides TORCH_NCCL_ASYNC_ERROR_HANDLING hence tests
# that use TORCH_NCCL_BLOCKING_WAIT will test it as expected.
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1"
nccl_debug_file = tempfile.NamedTemporaryFile()
os.environ["NCCL_ALGO"] = "NVLS"
os.environ["NCCL_DEBUG"] = "INFO"
os.environ["NCCL_DEBUG_SUBSYS"] = "NVLS"
os.environ["NCCL_DEBUG_FILE"] = nccl_debug_file.name
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
@requires_nccl()
@requires_nccl_version((2, 19), "Need NCCL 2.19 for user buffer registration")
@skip_if_lt_x_gpu(4)
@requires_multicast_support()
def test_nccl_user_buffer_registration(self):
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
backend="nccl", rank=self.rank, world_size=self.world_size, store=store
)
device = torch.device(f"cuda:{self.rank}")
torch.cuda.set_device(self.rank)
pg = c10d.distributed_c10d._get_default_group()
backend = pg._get_backend(torch.device(device))
allocator_path = self.createNcclAllocator()
allocator = torch.cuda.memory.CUDAPluggableAllocator(
allocator_path,
"nccl_alloc",
"nccl_free",
)
pool = torch.cuda.MemPool(allocator.allocator())
# allocate memory with ncclMemAlloc
with torch.cuda.use_mem_pool(pool):
tensor = torch.arange(1024 * 1024 * 2, device=device)
# register buffers to NCCL
backend.register_mem_pool(pool)
# allreduce now should use NVIDIA Switches
pg.allreduce(tensor).wait()
torch.cuda.synchronize(device=device)
# de-register buffers from NCCL
backend.deregister_mem_pool(pool)
# clean up memory
del tensor, pool
with open(os.environ["NCCL_DEBUG_FILE"]) as f:
nccl_debug_file_content = f.read()
# if buffers were registered and NVLS reduction ran, NCCL_DEBUG
# should show "local-registered" in stdout
self.assertRegex(nccl_debug_file_content, "local-registered")
class CommTest(test_c10d_common.AbstractCommTest, MultiProcessTestCase):
@property
def device(self):
return f"cuda:{self.rank}"
def setUp(self):
super().setUp()
# TORCH_NCCL_BLOCKING_WAIT overrides TORCH_NCCL_ASYNC_ERROR_HANDLING hence tests
# that use TORCH_NCCL_BLOCKING_WAIT will test it as expected.
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1"
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
def _test_broadcast_coalesced(self, process_group, device, root_rank):
half = torch.float16
# No support for float16 for CPU tensors
if device == torch.device("cpu"):
half = torch.float32
target = torch.arange(60, dtype=half, device=device).chunk(5)
target += torch.arange(60, dtype=torch.float32, device=device).chunk(5)
target += torch.arange(60, dtype=half, device=device).chunk(5)
target += torch.arange(60, dtype=torch.float64, device=device).chunk(5)
target += torch.arange(60, dtype=half, device=device).chunk(5)
target += torch.arange(60, dtype=torch.float32, device=device).chunk(5)
# The tensors to pass to broadcast are identical to the target
# only on the process that is the root of the broadcast.
if self.rank == root_rank:
tensors = [tensor.clone() for tensor in target]
else:
tensors = [torch.zeros_like(tensor) for tensor in target]
if self.rank != root_rank:
self.assertNotEqual(tensors, target)
c10d._broadcast_coalesced(
process_group, tensors, buffer_size=256, src=root_rank
)
if self.rank != root_rank:
self.assertEqual(tensors, target)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_broadcast_coalesced_nccl(self):
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
backend="nccl", store=store, rank=self.rank, world_size=self.world_size
)
process_group = c10d.distributed_c10d._get_default_group()
device = torch.device("cuda:%d" % self.rank)
ranks = [0, 1]
for root_rank in ranks:
self._test_broadcast_coalesced(process_group, device, root_rank)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_all_reduce_coalesced_nccl(self):
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
backend="nccl", store=store, rank=self.rank, world_size=self.world_size
)
process_group = c10d.distributed_c10d._get_default_group()
device = torch.device("cuda:%d" % self.rank)
tensors = [
torch.full((60 + i,), self.rank + 1 + i, device=device, dtype=torch.float)
for i in range(5)
]
torch.distributed.all_reduce_coalesced(tensors, group=process_group)
for i, t in enumerate(tensors):
self.assertEqual(
t,
torch.full_like(
t, self.world_size * (i + (self.world_size + 1.0) / 2.0)
),
)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_all_reduce_coalesced_nccl_float8_errors(self):
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
backend="nccl", store=store, rank=self.rank, world_size=self.world_size
)
process_group = c10d.distributed_c10d._get_default_group()
device = torch.device("cuda:%d" % self.rank)
tensors = [
torch.full(
(60 + i,), self.rank + 1 + i, device=device, dtype=torch.float
).to(torch.float8_e4m3fn)
for i in range(5)
]
with self.assertRaisesRegex(
RuntimeError,
"Float8 dtypes are not currenlty supported for NCCL reductions",
):
torch.distributed.all_reduce_coalesced(tensors, group=process_group)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_all_reduce_coalesced_manager_nccl(self):
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
backend="nccl", store=store, rank=self.rank, world_size=self.world_size
)
process_group = c10d.distributed_c10d._get_default_group()
device = torch.device("cuda:%d" % self.rank)
tensors = [
torch.full((60 + i,), self.rank + 1 + i, device=device, dtype=torch.float)
for i in range(5)
]
with torch.distributed._coalescing_manager(
group=process_group, device=device, async_ops=True
) as cm:
for tensor in tensors:
torch.distributed.all_reduce(tensor)
self.assertEqual(len(cm.works), 1)
cm.wait()
for i, t in enumerate(tensors):
self.assertEqual(
t,
torch.full_like(
t, self.world_size * (i + (self.world_size + 1.0) / 2.0)
),
)
@requires_nccl()
@skip_if_lt_x_gpu(2)
@skip_if_rocm_multiprocess
def test_intra_node_comm_all_reduce(self):
from torch._C._distributed_c10d import _get_intra_node_comm_usage_counter
from torch.testing._internal.common_cuda import SM80OrLater
for peer in range(self.world_size):
if peer == self.rank:
continue
if not torch._C._cuda_canDeviceAccessPeer(self.rank, peer):
raise SkipTest("Test requires p2p access")
if not SM80OrLater:
raise SkipTest("Test requires sm>=80")
store = c10d.FileStore(self.file_name, self.world_size)
os.environ["ENABLE_INTRA_NODE_COMM"] = "1"
os.environ["TEST_INTRA_NODE_COMM"] = "1"
torch.cuda.set_device(self.rank)
c10d.init_process_group(
backend="nccl", rank=self.rank, world_size=self.world_size, store=store
)
expect = self.world_size * (self.world_size - 1) // 2
# IntraNodeComm currently only supports sum and bf16.
# Verify that it is not used in the next two configurations.
t = torch.full((4 * 1024 // 2,), self.rank).cuda()
c10d.all_reduce(t, c10d.ReduceOp.SUM)
self.assertTrue(t.eq(expect).all())
self.assertEqual(_get_intra_node_comm_usage_counter(), 0)
t = torch.full((4 * 1024 // 2,), self.rank, dtype=torch.bfloat16).cuda()
c10d.all_reduce(t, c10d.ReduceOp.AVG)
self.assertEqual(_get_intra_node_comm_usage_counter(), 0)
# Verify that IntraNodeComm is used up to 10MB
t = torch.full((4 * 1024 // 2,), self.rank, dtype=torch.bfloat16).cuda()
c10d.all_reduce(t, c10d.ReduceOp.SUM)
self.assertTrue(t.eq(expect).all())
self.assertEqual(_get_intra_node_comm_usage_counter(), 1)
t = torch.full((512 * 1024 // 2,), self.rank, dtype=torch.bfloat16).cuda()
c10d.all_reduce(t, c10d.ReduceOp.SUM)
self.assertTrue(t.eq(expect).all())
self.assertEqual(_get_intra_node_comm_usage_counter(), 2)
t = torch.full((10 * 1024**2 // 2,), self.rank, dtype=torch.bfloat16).cuda()
c10d.all_reduce(t, c10d.ReduceOp.SUM)
self.assertTrue(t.eq(expect).all())
self.assertEqual(_get_intra_node_comm_usage_counter(), 3)
# Verify that IntraNodeComm is not used beyond 10MB
t = torch.full(
(10 * 1024**2 // 2 + 1,), self.rank, dtype=torch.bfloat16
).cuda()
c10d.all_reduce(t, c10d.ReduceOp.SUM)
self.assertTrue(t.eq(expect).all())
self.assertEqual(_get_intra_node_comm_usage_counter(), 3)
c10d.destroy_process_group()
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_sequence_num_set_default_pg_nccl(self):
torch.cuda.set_device(self.rank)
self._test_sequence_num_set_default_pg(backend="nccl")
@skip_if_lt_x_gpu(2)
@requires_nccl()
def test_sequence_num_incremented_nccl_default(self):
self._test_sequence_num_incremented_default_group("nccl")
@skip_if_lt_x_gpu(4)
@requires_nccl()
def test_sequence_num_incremented_nccl_subgroup(self):
if self.world_size < 4:
return skip_but_pass_in_sandcastle("Test requires world_size of at least 4")
self._test_sequence_num_incremented_subgroup("nccl")
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_sequence_num_set_nccl_new_group(self):
torch.cuda.set_device(self.rank)
self._test_sequence_num_set_new_group(backend="nccl")
def _test_pass_nccl_options(self, pg_opts):
store = c10d.FileStore(self.file_name, self.world_size)
# Test init_process_group accepts options
dist.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
pg_options=pg_opts,
)
# Test with new_group
pg = c10d.new_group([0, 1], pg_options=pg_opts)
# test the process group works as expected
t = torch.tensor([self.rank + 1] * 10).cuda(self.rank)
pg.allreduce(t).wait()
expected_tensor = torch.tensor([3] * 10).cuda(self.rank)
self.assertEqual(expected_tensor, t)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_pass_nccl_options_high_priority_stream(self):
pg_opts = c10d.ProcessGroupNCCL.Options()
pg_opts.is_high_priority_stream = True
self._test_pass_nccl_options(pg_opts)
@requires_nccl()
@requires_nccl_version(
(2, 18), "Need NCCL 2.17+ for configuring NCCL communicators"
)
@skip_if_lt_x_gpu(2)
def test_pass_nccl_options_config(self):
pg_opts = c10d.ProcessGroupNCCL.Options()
pg_opts.config.max_ctas = 4
pg_opts.config.min_ctas = 2
pg_opts.config.cga_cluster_size = 2
pg_opts.config.net_name = "Socket"
pg_opts.config.split_share = 1
nccl_debug_file = tempfile.NamedTemporaryFile()
os.environ["NCCL_DEBUG"] = "INFO"
os.environ["NCCL_DEBUG_FILE"] = nccl_debug_file.name
# Tests functionality when passing nccl config
self._test_pass_nccl_options(pg_opts)
# Tests if comms were configured
nccl_debug_file_content = nccl_debug_file.read()
max_ctas = re.search(rb"Max CTAs.*(\d+)|$", nccl_debug_file_content).group(1)
min_ctas = re.search(rb"Min CTAs.*(\d+)|$", nccl_debug_file_content).group(1)
split_share = re.search(
rb"Split share.*(\d+)|$", nccl_debug_file_content
).group(1)
cga_cluster_size = re.search(
rb"CGA cluster.*(\d+)|$", nccl_debug_file_content
).group(1)
net_name = re.search(
rb"Using network.([a-zA-z]+)|$", nccl_debug_file_content
).group(1)
self.assertEqual(pg_opts.config.max_ctas, int(max_ctas))
self.assertEqual(pg_opts.config.min_ctas, int(min_ctas))
self.assertEqual(pg_opts.config.cga_cluster_size, int(cga_cluster_size))
self.assertEqual(pg_opts.config.net_name, net_name.decode())
self.assertEqual(pg_opts.config.split_share, int(split_share))
@requires_nccl()
@skip_if_lt_x_gpu(4)
def test_nccl_barrier(self):
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
backend="nccl", rank=self.rank, world_size=self.world_size, store=store
)
t = torch.tensor([self.rank + 1] * 10).cuda(2 * self.rank)
c10d.all_reduce(t)
expected_tensor = torch.tensor([3] * 10).cuda(2 * self.rank)
self.assertEqual(expected_tensor, t)
# Test with new_group
pg = c10d.new_group([0, 1])
t = torch.tensor([self.rank + 1] * 10).cuda(2 * self.rank)
pg.allreduce(t).wait()
self.assertEqual(expected_tensor, t)
pg = c10d.new_group([0])
if self.rank == 0:
t = torch.tensor([self.rank + 1] * 10).cuda(2 * self.rank)
expected_tensor = torch.tensor([self.rank + 1] * 10).cuda(2 * self.rank)
pg.allreduce(t).wait()
self.assertEqual(expected_tensor, t)
pg = c10d.new_group([1])
if self.rank == 1:
t = torch.tensor([self.rank + 1] * 10).cuda(2 * self.rank)
expected_tensor = torch.tensor([self.rank + 1] * 10).cuda(2 * self.rank)
pg.allreduce(t).wait()
self.assertEqual(expected_tensor, t)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_nccl_barrier_device_ids(self):
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
backend="nccl", rank=self.rank, world_size=self.world_size, store=store
)
c10d.barrier(device_ids=[self.rank])
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_nccl_barrier_device_ids_function_argument(self):
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
backend="nccl", rank=self.rank, world_size=self.world_size, store=store
)
with self.assertRaisesRegex(TypeError, "Invalid function argument"):
c10d.barrier(device_ids=self.rank)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_unwaited(self) -> None:
# Verify that the process can terminate gracefully
# even with unwaited tensors
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
backend="nccl", rank=self.rank, world_size=self.world_size, store=store
)
# Case 1: Run collectives under context manager, and don't call wait on them.
with _functional_collectives.allow_inflight_collective_as_graph_input_ctx():
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
input = torch.full(
(10240, 10240), float(self.rank), device=f"cuda:{self.rank}"
)
dist.all_reduce(input, op=dist.ReduceOp.SUM, async_op=True)
# Non-functional collectives run under the context manager is registered in the work registry.
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 1)
# Running another collective on the same tensor should still work
dist.all_reduce(input, op=dist.ReduceOp.SUM, async_op=True)
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 2)
# Case 2: Run collectives not under context manager, and don't call wait on them.
# NOTE: Here we intentionally test memory-stressed case.
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 2)
for _ in range(50000):
input = torch.full(
(1024, 1024), float(self.rank), device=f"cuda:{self.rank}"
)
dist.all_reduce(input, op=dist.ReduceOp.SUM, async_op=True)
# Work registry size is unchanged, since non-functional collectives not run under
# the context manager is not registered in the work registry.
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 2)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_wait_tensor(self) -> None:
# Verify that c10d_functional.wait_tensor() can be invoked on
# output tensor of non-functional collective
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
backend="nccl", rank=self.rank, world_size=self.world_size, store=store
)
# Case 1: under context manager (i.e. work is registered in registry)
with _functional_collectives.allow_inflight_collective_as_graph_input_ctx():
input1 = torch.full((10, 10), float(self.rank), device=f"cuda:{self.rank}")
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
dist.all_reduce(input1, op=dist.ReduceOp.SUM, async_op=True)
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 1)
torch.ops.c10d_functional.wait_tensor(input1)
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
input2 = torch.full((10, 10), float(self.rank), device=f"cuda:{self.rank}")
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
work = dist.all_reduce(input2, op=dist.ReduceOp.SUM, async_op=True)
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 1)
work.wait()
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
self.assertEqual(input1, input2)
# Case 2: not under context manager (i.e. work is not registered in registry)
input1 = torch.full((10, 10), float(self.rank), device=f"cuda:{self.rank}")
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
dist.all_reduce(input1, op=dist.ReduceOp.SUM, async_op=True)
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
# this does not take effect, since the underlying wait_tensor() logic would not
# be able to find the corresponding work object (because it's not registered in registry)
torch.ops.c10d_functional.wait_tensor(input1)
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
input2 = torch.full((10, 10), float(self.rank), device=f"cuda:{self.rank}")
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
work = dist.all_reduce(input2, op=dist.ReduceOp.SUM, async_op=True)
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
work.wait()
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
self.assertEqual(input1, input2)
@requires_nccl()
@skip_if_lt_x_gpu(2)
@with_dist_debug_levels(levels=["DETAIL"])
def test_nccl_warn_not_in_group_debug_detail(self):
self._test_warn_not_in_group(backend="nccl")
@requires_nccl()
@skip_if_lt_x_gpu(2)
@with_dist_debug_levels(levels=["INFO"])
def test_nccl_warn_not_in_group_debug_info(self):
self._test_warn_not_in_group(backend="nccl")
@requires_nccl()
@skip_if_lt_x_gpu(2)
@with_dist_debug_levels(levels=["OFF"])
def test_nccl_warn_not_in_group_debug_off(self):
self._test_warn_not_in_group(backend="nccl")
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_nncl_rank_membership(self):
self._test_rank_membership(backend="nccl")
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_tensor_dtype_mismatch(self):
self._test_tensor_dtype_mismatch(backend="nccl")
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_tensor_dtype_complex(self):
self._test_tensor_dtype_complex(backend="nccl")
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_reduce_scatter_base_k(self):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
output_tensor = torch.zeros(2, dtype=torch.int64).to(self.rank)
input_tensors = torch.arange(self.world_size * 2, dtype=torch.int64).to(
self.rank
)
input_tensors = torch.reshape(input_tensors, (self.world_size, 2))
dist.reduce_scatter_tensor(output_tensor, input_tensors)
self.assertEqual(output_tensor, input_tensors[self.rank] * self.world_size)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_reduce_scatter_tensor_coalesced(self):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
output_tensors = torch.zeros(2, 2).to(self.rank)
input_tensors = [torch.ones(2, 2).to(self.rank) for _ in range(self.world_size)]
with dist._coalescing_manager():
for i in range(self.world_size):
dist.reduce_scatter_tensor(output_tensors[i], input_tensors[i])
self.assertEqual(output_tensors, input_tensors[self.rank] * self.world_size)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_reduce_scatter_base_k_float8_errors(self):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
output_tensor = (
torch.zeros(2, dtype=torch.float32).to(torch.float8_e4m3fn).to(self.rank)
)
input_tensors = (
torch.arange(self.world_size * 2, dtype=torch.float32)
.to(torch.float8_e4m3fn)
.to(self.rank)
)
input_tensors = torch.reshape(input_tensors, (self.world_size, 2))
with self.assertRaisesRegex(
RuntimeError,
"Float8 dtypes are not currenlty supported for NCCL reductions",
):
dist.reduce_scatter_tensor(output_tensor, input_tensors)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_reduce_scatter_tensor_coalesced_float8_errors(self):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
output_tensors = torch.zeros(2, 2).to(torch.float8_e5m2).to(self.rank)
input_tensors = [
torch.ones(2, 2).to(torch.float8_e5m2).to(self.rank)
for _ in range(self.world_size)
]
with self.assertRaisesRegex(
RuntimeError,
"Float8 dtypes are not currenlty supported for NCCL reductions",
):
with dist._coalescing_manager():
for i in range(self.world_size):
dist.reduce_scatter_tensor(output_tensors[i], input_tensors[i])
self.assertEqual(output_tensors, input_tensors[self.rank])
class SetDeviceMethod(Enum):
TORCH_CUDA_SET = auto() # torch.cuda.set_device
COLLECTIVE_ARGUMENT = auto() # broadcast_object_list(device=)
class NcclProcessGroupWithDispatchedCollectivesTests(
test_c10d_common.ProcessGroupWithDispatchedCollectivesTests
):
@requires_nccl()
@skip_if_lt_x_gpu(1)
def test_collectives(self):
self._test_collectives(backend="nccl")
@requires_nccl()
@skip_if_lt_x_gpu(1)
def test_allreduce_coalesced(self):
self._test_allreduce_coalesced(backend="nccl")
@requires_nccl()
@skip_if_lt_x_gpu(1)
def test_all_to_all_single(self):
self._test_all_to_all_single(backend="nccl")
@requires_nccl()
@skip_if_lt_x_gpu(1)
def test_allgather_base(self):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
device = "cuda"
tensor = torch.ones(10, 10, device=torch.device(device))
output_tensor = torch.zeros(10, 10, device=torch.device(device))
dist.all_gather_into_tensor(output_tensor, tensor)
self.assertEqual(output_tensor, tensor)
@requires_nccl()
@skip_if_lt_x_gpu(1)
@parametrize("float8_dtype", [torch.float8_e4m3fn, torch.float8_e5m2])
def test_allgather_float8(self, float8_dtype):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
device = "cuda"
tensor = torch.ones(10, 16, device=torch.device(device)).to(float8_dtype)
output_tensor = torch.zeros(10, 16, device=torch.device(device)).to(
float8_dtype
)
dist.all_gather_into_tensor(output_tensor, tensor)
self.assertEqual(output_tensor.view(torch.float32), tensor.view(torch.float32))
instantiate_parametrized_tests(NcclProcessGroupWithDispatchedCollectivesTests)
class LargeCommTest(test_c10d_common.AbstractLargeCommTest, MultiProcessTestCase):
def setUp(self):
super().setUp()
# TORCH_NCCL_BLOCKING_WAIT overrides TORCH_NCCL_ASYNC_ERROR_HANDLING hence tests
# that use TORCH_NCCL_BLOCKING_WAIT will test it as expected.
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1"
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
@property
def device(self):
return self.rank
@requires_nccl()
@skip_if_lt_x_gpu(4)
def test_new_group_local_sync(self):
self._test_new_group_local_sync(backend="nccl")
@requires_nccl()
@skip_if_lt_x_gpu(4)
def test_new_group_local_sync_sanity_check(self):
self._test_new_group_local_sync_sanity_check(backend="nccl")
@requires_nccl()
@skip_if_lt_x_gpu(4)
def test_new_group_local_sync_duplicated_pg(self):
self._test_new_group_local_sync_duplicate_pg(backend="nccl")
def _init_two_pg2_subgroups(self, world_size: int = 4):
if world_size != 4:
raise NotImplementedError(
f"need world size of 4 to get 2 subgroup PGs, but got world size of {world_size}"
)
store = c10d.FileStore(self.file_name, world_size)
c10d.init_process_group(
backend="nccl", store=store, rank=self.rank, world_size=world_size
)
# every rank creates the same sub groups
# including unused sub groups in the current rank
a_group = c10d.new_group([0, 1])
b_group = c10d.new_group([2, 3])
return a_group if self.rank < 2 else b_group
@requires_nccl()
@skip_if_lt_x_gpu(4)
@parametrize("group_rank", [True, False])
def test_gather_subgroup(self, group_rank):
world_size = 4
if self.rank >= world_size:
# just easier to write the test for exactly 4 gpus, even if this test class increased to 8gpu later
return
subgroup = self._init_two_pg2_subgroups(world_size)
device = torch.device("cuda:%d" % self.rank)
input = torch.ones((10,), device=device) * self.rank
if self.rank == 0 or self.rank == 2:
gather_list = [torch.empty_like(input) for _ in range(subgroup.size())]
if group_rank:
# global_dst=0 group_dst=0 my_global_rank=2 gather_list is not None=True
torch.distributed.gather(
input,
gather_list=gather_list,
group_dst=0,
group=subgroup,
async_op=False,
)
else:
torch.distributed.gather(
input,
gather_list=gather_list,
dst=self.rank,
group=subgroup,
async_op=False,
)
for src in range(len(gather_list)):
expected = (torch.ones_like(input) * self.rank) + src
self.assertEqual(gather_list[src], expected)
else:
if group_rank:
torch.distributed.gather(
input,
gather_list=None,
group_dst=0,
group=subgroup,
async_op=False,
)
else:
torch.distributed.gather(
input,
gather_list=None,
dst=self.rank - 1,
group=subgroup,
async_op=False,
)
@requires_nccl()
@skip_if_lt_x_gpu(4)
@parametrize("group_rank", [True, False])
def test_gather_object_subgroup(self, group_rank):
world_size = 4
if self.rank >= world_size:
# just easier to write the test for exactly 4 gpus, even if this test class increased to 8gpu later
return
subgroup = self._init_two_pg2_subgroups(world_size)
# discrepancy #1
# have to set device or else gather_object gets wrong device from 'current_device = _get_pg_default_device(group)
torch.cuda.set_device(self.rank)
input = {"rank": self.rank}
if self.rank == 0 or self.rank == 2:
# discrepancy #2
# another weird thing- what's the point of making me specify some empty objects in my list?
# empty list should be valid imo. (but it throws an error)
gather_list = [{}, {}]
if group_rank:
torch.distributed.gather_object(
input, object_gather_list=gather_list, group_dst=0, group=subgroup
)
else:
torch.distributed.gather_object(
input, object_gather_list=gather_list, dst=self.rank, group=subgroup
)
for src in range(len(gather_list)):
self.assertEqual(gather_list[src]["rank"], self.rank + src)
else:
if group_rank:
torch.distributed.gather_object(
input, object_gather_list=None, group_dst=0, group=subgroup
)
else:
torch.distributed.gather_object(
input, object_gather_list=None, dst=self.rank - 1, group=subgroup
)
@requires_nccl()
@skip_if_lt_x_gpu(4)
@parametrize("group_rank", [True, False])
def test_reduce_subgroup(self, group_rank):
world_size = 4
if self.rank >= world_size:
return
subgroup = self._init_two_pg2_subgroups(world_size)
device = torch.device("cuda:%d" % self.rank)
x = torch.ones((10,), device=device) * self.rank
if self.rank == 0 or self.rank == 2:
expected = x + torch.ones((10,), device=device) * (self.rank + 1)
if group_rank:
c10d.reduce(x, group_dst=0, group=subgroup, async_op=False)
else:
c10d.reduce(x, dst=self.rank, group=subgroup, async_op=False)
self.assertEqual(x, expected)
else:
if group_rank:
c10d.reduce(x, group_dst=0, group=subgroup, async_op=False)
else:
c10d.reduce(x, dst=self.rank - 1, group=subgroup, async_op=False)
@requires_nccl()
@skip_if_lt_x_gpu(4)
@parametrize("group_rank", [True, False])
@parametrize("async_op", [True, False])
def test_send_recv_subgroup(self, async_op, group_rank):
world_size = 4
if self.rank >= world_size:
return
subgroup = self._init_two_pg2_subgroups(world_size)
device = torch.device("cuda:%d" % self.rank)
if self.rank == 0 or self.rank == 2:
x = torch.empty((10,), device=device)
if async_op:
if group_rank:
c10d.irecv(x, group_src=1, group=subgroup).wait()
else:
c10d.irecv(x, src=self.rank + 1, group=subgroup).wait()
else:
if group_rank:
c10d.recv(x, group_src=1, group=subgroup)
else:
c10d.recv(x, src=self.rank + 1, group=subgroup)
expected = torch.ones((10,), device=device) * (self.rank + 1)
self.assertEqual(x, expected)
else:
x = torch.ones((10,), device=device) * self.rank
if async_op:
if group_rank:
c10d.isend(x, group_dst=0, group=subgroup).wait()
else:
c10d.isend(x, dst=self.rank - 1, group=subgroup).wait()
else:
if group_rank:
c10d.send(x, group_dst=0, group=subgroup)
else:
c10d.send(x, dst=self.rank - 1, group=subgroup)
@requires_nccl()
@skip_if_lt_x_gpu(4)
@parametrize("group_rank", [True, False])
def test_batch_send_recv_subgroup(self, group_rank):
world_size = 4
if self.rank >= world_size:
return
subgroup = self._init_two_pg2_subgroups(world_size)
device = torch.device("cuda:%d" % self.rank)
ops = []
if self.rank == 0 or self.rank == 2:
x = torch.empty((10,), device=device)
if group_rank:
ops.append(c10d.P2POp(dist.irecv, x, group=subgroup, group_peer=1))
else:
ops.append(
c10d.P2POp(dist.irecv, x, peer=self.rank + 1, group=subgroup)
)
for work in dist.batch_isend_irecv(ops):
work.wait()
expected = torch.ones((10,), device=device) * (self.rank + 1)
self.assertEqual(x, expected)
else:
x = torch.ones((10,), device=device) * self.rank
if group_rank:
ops.append(c10d.P2POp(dist.isend, x, group=subgroup, group_peer=0))
else:
ops.append(
c10d.P2POp(dist.isend, x, peer=self.rank - 1, group=subgroup)
)
for work in dist.batch_isend_irecv(ops):
work.wait()
@requires_nccl()
@skip_if_lt_x_gpu(4)
@parametrize("group_rank", [True, False])
def test_broadcast_subgroup(self, group_rank):
world_size = 4
if self.rank >= world_size:
return
subgroup = self._init_two_pg2_subgroups(world_size)
device = torch.device("cuda:%d" % self.rank)
if self.rank == 0 or self.rank == 2:
x = torch.empty((10,), device=device)
if group_rank:
c10d.broadcast(x, group_src=1, group=subgroup)
else:
c10d.broadcast(x, src=self.rank + 1, group=subgroup)
expected = torch.ones((10,), device=device) * (self.rank + 1)
self.assertEqual(x, expected)
else:
x = torch.ones((10,), device=device) * self.rank
if group_rank:
c10d.broadcast(x, group_src=1, group=subgroup)
else:
c10d.broadcast(x, src=self.rank, group=subgroup)
@requires_nccl()
@skip_if_lt_x_gpu(4)
@parametrize(
"set_device",
[SetDeviceMethod.TORCH_CUDA_SET, SetDeviceMethod.COLLECTIVE_ARGUMENT],
)
@parametrize("group_rank", [True, False])
def test_send_recv_object_list_subgroup(
self, set_device: SetDeviceMethod, group_rank
):
world_size = 4
if self.rank >= world_size:
return
subgroup = self._init_two_pg2_subgroups(world_size)
if set_device == SetDeviceMethod.TORCH_CUDA_SET:
torch.cuda.set_device(self.rank)
device = None
else:
device = torch.device("cuda:%d" % self.rank)
if self.rank == 0 or self.rank == 2:
x = [{}]
if group_rank:
c10d.recv_object_list(x, group_src=1, group=subgroup, device=device)
else:
c10d.recv_object_list(
x, src=self.rank + 1, group=subgroup, device=device
)
expected = [{"rank": self.rank + 1}]
self.assertEqual(x, expected)
else:
x = [{"rank": self.rank}]
if group_rank:
c10d.send_object_list(x, group_dst=0, group=subgroup, device=device)
else:
c10d.send_object_list(
x, dst=self.rank - 1, group=subgroup, device=device
)
@requires_nccl()
@skip_if_lt_x_gpu(4)
@parametrize(
"set_device",
[SetDeviceMethod.TORCH_CUDA_SET, SetDeviceMethod.COLLECTIVE_ARGUMENT],
)
@parametrize("group_rank", [True, False])
def test_broadcast_object_list_subgroup(
self, set_device: SetDeviceMethod, group_rank
):
world_size = 4
if self.rank >= world_size:
return
subgroup = self._init_two_pg2_subgroups(world_size)
if set_device == SetDeviceMethod.TORCH_CUDA_SET:
torch.cuda.set_device(self.rank)
device = None
else:
device = torch.device("cuda:%d" % self.rank)
if self.rank == 0 or self.rank == 2:
x = [{}]
if group_rank:
c10d.broadcast_object_list(
x, group_src=1, group=subgroup, device=device
)
else:
c10d.broadcast_object_list(
x, src=self.rank + 1, group=subgroup, device=device
)
expected = [{"rank": self.rank + 1}]
self.assertEqual(x, expected)
else:
x = [{"rank": self.rank}]
if group_rank:
c10d.broadcast_object_list(
x, group_src=1, group=subgroup, device=device
)
else:
c10d.broadcast_object_list(
x, src=self.rank, group=subgroup, device=device
)
@requires_nccl()
@skip_if_lt_x_gpu(4)
@parametrize("group_rank", [True, False])
def test_scatter_subgroup(self, group_rank):
world_size = 4
if self.rank >= world_size:
return
subgroup = self._init_two_pg2_subgroups(world_size)
device = torch.device("cuda:%d" % self.rank)
x = torch.empty((10,), device=device)
expected = torch.ones((10,), device=device) * self.rank
if self.rank == 0 or self.rank == 2:
if group_rank:
c10d.scatter(x, scatter_list=None, group_src=1, group=subgroup)
else:
c10d.scatter(x, scatter_list=None, src=self.rank + 1, group=subgroup)
else:
scatter_list = [
torch.ones((10,), device=device) * (self.rank - 1),
torch.ones((10,), device=device) * self.rank,
]
if group_rank:
c10d.scatter(x, scatter_list=scatter_list, group_src=1, group=subgroup)
else:
c10d.scatter(
x, scatter_list=scatter_list, src=self.rank, group=subgroup
)
self.assertEqual(x, expected)
@requires_nccl()
@skip_if_lt_x_gpu(4)
@parametrize("group_rank", [True, False])
def test_scatter_object_list_subgroup(self, group_rank):
world_size = 4
if self.rank >= world_size:
return
subgroup = self._init_two_pg2_subgroups(world_size)
torch.cuda.set_device(self.rank)
scatter_object_output_list = [None]
expected = [{"rank": self.rank}]
if self.rank == 0 or self.rank == 2:
if group_rank:
c10d.scatter_object_list(
scatter_object_output_list=scatter_object_output_list,
scatter_object_input_list=None,
group_src=1,
group=subgroup,
)
else:
c10d.scatter_object_list(
scatter_object_output_list=scatter_object_output_list,
scatter_object_input_list=None,
src=self.rank + 1,
group=subgroup,
)
else:
scatter_object_input_list = [
{"rank": self.rank - 1},
{"rank": self.rank},
]
if group_rank:
c10d.scatter_object_list(
scatter_object_output_list=scatter_object_output_list,
scatter_object_input_list=scatter_object_input_list,
group_src=1,
group=subgroup,
)
else:
c10d.scatter_object_list(
scatter_object_output_list=scatter_object_output_list,
scatter_object_input_list=scatter_object_input_list,
src=self.rank,
group=subgroup,
)
self.assertEqual(scatter_object_output_list, expected)
instantiate_parametrized_tests(LargeCommTest)
class SparseCollective(MultiProcessTestCase):
@property
def world_size(self):
return 1
def setUp(self):
super().setUp()
# TORCH_NCCL_BLOCKING_WAIT overrides TORCH_NCCL_ASYNC_ERROR_HANDLING hence tests
# that use TORCH_NCCL_BLOCKING_WAIT will test it as expected.
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1"
# self.num_gpus = torch.cuda.device_count()
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
class ToyModel(nn.Module):
def __init__(self, rank, vocab_size, embedding_dim):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim, sparse=True).to(
rank
)
self.linear = nn.Linear(embedding_dim, 1).to(rank)
def forward(self, inputs):
embedded = self.embedding(inputs)
# embedded shape: (batch_size, sequence_length, embedding_dim)
flattened = torch.mean(embedded, dim=1)
# flattened shape: (batch_size, embedding_dim)
output = self.linear(flattened)
# output shape: (batch_size, 1)
return output
@requires_nccl()
@skip_if_lt_x_gpu(1)
def test_ddp_set_sparse_metadata(self):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
vocab_size = 5
model = SparseCollective.ToyModel(
self.rank, vocab_size=vocab_size, embedding_dim=10
)
ddp_model = DistributedDataParallel(model)
inputs = torch.tensor([[1, 0, 0], [0, 0, 0], [0, 0, 0]]).to(self.rank)
# set sparse metadata on the DDP model
indices = torch.Tensor(list(range(vocab_size)))
ddp_model._set_sparse_metadata({"embedding.weight": indices})
# forward pass
try:
output = ddp_model(inputs)
loss = output.sum()
# backward pass
loss.backward()
self.assertTrue(ddp_model.module.embedding.weight.grad.indices, indices)
except RuntimeError as e:
if "NCCL does not support all_reduce with sparse tensors" in str(e):
pass
else:
# Rethrow the exception if it's a different error
raise
class NCCLTraceTestBase(MultiProcessTestCase):
def setUp(self):
super().setUp()
os.environ[
"TORCH_NCCL_ENABLE_TIMING"
] = "0" # see 'timing_enabled' parametrized tests
os.environ["TORCH_NCCL_TRACE_BUFFER_SIZE"] = "1000"
os.environ["TORCH_NCCL_DUMP_ON_TIMEOUT"] = "1"
self.tempdir = tempfile.TemporaryDirectory()
os.environ["TORCH_NCCL_DEBUG_INFO_TEMP_FILE"] = self._trace_basename()
os.environ["TORCH_NCCL_DEBUG_INFO_PIPE_FILE"] = self._trace_basename()
self._spawn_processes()
@classmethod
def _run(
cls,
parent_conn,
rank: int,
test_name: str,
file_name: str,
parent_pipe,
**kwargs,
) -> None:
cls.parent = parent_conn
super()._run(rank, test_name, file_name, parent_pipe)
@property
def local_device(self):
return torch.device("cuda", self.rank_to_GPU[self.rank][0])
def _join_processes(self, fn):
# We need to patch sys.exit() as skip_if will use sys.exit() and
# the exit code from the this process will not be catched.
with mock.patch("sys.exit") as exit_mock:
fn()
super()._join_processes(fn)
def _spawn_processes(self) -> None:
proc = torch.multiprocessing.get_context("spawn").Process
self.children_pipes = []
parent_pipes = []
for i in range(self.world_size):
parent_conn, child_conn = torch.multiprocessing.Pipe()
self.children_pipes.append(child_conn)
parent_pipes.append(parent_conn)
piter = iter(parent_pipes)
def wrap(*positional, args, **kwargs):
args = (next(piter), *args)
return proc(*positional, args=args, **kwargs)
self._start_processes(wrap)
def _create_process_group_nccl(self):
store = dist.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
"nccl", world_size=self.world_size, rank=self.rank, store=store
)
pg = c10d.distributed_c10d._get_default_group()
return pg
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
@property
def world_size(self):
return 2
@property
def rank_to_GPU(self):
# return rank to GPU map
return init_multigpu_helper(self.world_size, "nccl")
def _trace_basename(self):
# we pass the base to the env, and the dump util will append rank
return os.path.join(self.tempdir.name, "trace_")
def _trace_name(self, rank):
return self._trace_basename() + str(rank)
def started_or_scheduled(self, timing_enabled):
return "started" if timing_enabled else "scheduled"
class NCCLTraceTest(NCCLTraceTestBase):
def _verify_trace(self, t, include_collectives, timing_enabled, is_json):
ver = t["version"]
self.assertEqual(ver, "2.4")
pg_config = t["pg_config"]
self.assertEqual(len(pg_config), 1)
default_pg_info = pg_config["0"]
self.assertIn("name", default_pg_info)
self.assertIn("desc", default_pg_info)
self.assertIn("ranks", default_pg_info)
pg_status = t["pg_status"]
self.assertEqual(len(pg_status), 1)
self.assertEqual(str(pg_status["0"]["last_enqueued_collective"]), "2")
self.assertEqual(str(pg_status["0"]["last_completed_collective"]), "2")
self.assertEqual(
str(pg_status["0"]["last_started_collective"]),
"2" if timing_enabled else "-1",
)
global_ranks = pg_config["0"]["ranks"]
self.assertEqual(len(json.loads(global_ranks)), self.world_size)
if include_collectives:
self.assertEqual(len(t["entries"]), 2)
t = t["entries"]
last = t[-1]
self.assertEqual(last["process_group"], ("0", "default_pg"))
self.assertEqual(last["state"], "completed")
s = last["time_discovered_started_ns"]
f = last["time_discovered_completed_ns"]
self.assertEqual(last["record_id"], 1)
self.assertIsNotNone(f)
if timing_enabled:
self.assertIsNotNone(s)
self.assertTrue(s <= f)
# we don't collect stack traces in JSON at the moment
if not is_json:
self.assertIn("test_c10d_nccl.py", str(last["frames"]))
self.assertEqual(last["input_sizes"], ((3, 4),))
self.assertEqual(last["input_dtypes"], ["Float"])
self.assertEqual(last["output_sizes"], ((3, 4),))
self.assertEqual(last["output_dtypes"], ["Float"])
self.assertEqual(last["collective_seq_id"], 2)
self.assertEqual(last["timeout_ms"], 600000)
now = datetime.now()
event_created_time = datetime.fromtimestamp(
last["time_created_ns"] / 1000000000
)
before_test = now - timedelta(minutes=1)
self.assertTrue(before_test < event_created_time < now)
if timing_enabled:
# very loose bounds, measured 0.036 ms on devgpu
self.assertTrue(0 < last["duration_ms"] < 100)
else:
self.assertTrue("duration_ms" not in last)
else:
self.assertTrue("entries" not in t)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("timing_enabled", [True, False])
@parametrize("include_collectives", [True, False])
def test_short_json(self, timing_enabled, include_collectives):
if self.rank == self.MAIN_PROCESS_RANK:
return
pg = self._create_process_group_nccl()
if timing_enabled:
pg._enable_collectives_timing()
device = self.local_device
a = torch.full((3, 4), float(self.rank), device=device)
for i in range(2):
f = pg.allreduce(a)
f.wait()
torch.cuda.synchronize(device=device)
# gah ok so now the duration_ms is populated best-effort since it can only happen outside "dump()" api
time.sleep(1)
t = json.loads(
torch._C._distributed_c10d._dump_nccl_trace_json(
includeCollectives=include_collectives
)
)
self._verify_trace(t, include_collectives, timing_enabled, True)
dist.destroy_process_group()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("timing_enabled", [True, False])
@parametrize("include_collectives", [True, False])
def test_short_pickle(self, timing_enabled, include_collectives):
if self.rank == self.MAIN_PROCESS_RANK:
return
pg = self._create_process_group_nccl()
if timing_enabled:
pg._enable_collectives_timing()
device = self.local_device
a = torch.full((3, 4), float(self.rank), device=device)
for i in range(2):
f = pg.allreduce(a)
f.wait()
torch.cuda.synchronize(device=device)
# gah ok so now the duration_ms is populated best-effort since it can only happen outside "dump()" api
time.sleep(1)
t = pickle.loads(
torch._C._distributed_c10d._dump_nccl_trace(
includeCollectives=include_collectives
)
)
self._verify_trace(
t,
include_collectives=include_collectives,
timing_enabled=timing_enabled,
is_json=True,
)
dist.destroy_process_group()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_dump_pipe(self):
def open_file_with_timeout(file_path, mode, timeout=1.0):
start_time = time.time()
while time.time() - start_time < timeout:
if os.path.exists(file_path):
return open(file_path, mode)
time.sleep(0.1)
raise FileNotFoundError
if self.rank == self.MAIN_PROCESS_RANK:
for c in self.children_pipes:
self.assertEqual(c.recv(), "next")
dump_file = self._trace_name(rank=0)
pipe_file = dump_file + ".pipe"
with open_file_with_timeout(pipe_file, "w") as f:
f.write("1\n")
with open_file_with_timeout(dump_file, "rb", timeout=10.0) as f:
self.assertTrue("all_reduce" in str(pickle.load(f)))
for c in self.children_pipes:
c.send("next")
return
pg = self._create_process_group_nccl()
device = self.local_device
a = torch.full((3, 4), float(self.rank), device=device)
for i in range(2):
f = pg.allreduce(a)
f.wait()
torch.cuda.synchronize(device=device)
self.parent.send("next")
self.parent.recv()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_long(self):
os.environ["TORCH_NCCL_TRACE_BUFFER_SIZE"] = "10"
if self.rank == self.MAIN_PROCESS_RANK:
return
pg = self._create_process_group_nccl()
device = self.local_device
a = torch.full((3, 4), float(self.rank), device=device)
for i in range(2):
# test some other primitives to make sure
# their strings are valid
xs = [torch.ones(3, 4, device=device)]
pg.broadcast(xs).wait()
pg.allreduce(xs).wait()
pg.reduce(xs).wait()
ys = [[torch.empty(3, 4, device=device) for _ in range(self.world_size)]]
pg.allgather(ys, xs).wait()
pg.reduce_scatter(xs, ys).wait()
f = pg.allreduce(a)
f.wait()
torch.cuda.synchronize(device=device)
t = pickle.loads(torch._C._distributed_c10d._dump_nccl_trace())
t = t["entries"]
self.assertEqual(len(t), 10)
first = t[0]
last = t[-1]
self.assertEqual(last["profiling_name"], "nccl:all_reduce")
self.assertEqual(last["state"], "completed")
self.assertIn("test_c10d_nccl.py", str(last["frames"]))
self.assertEqual(last["input_sizes"], ((3, 4),))
self.assertEqual(last["input_dtypes"], ["Float"])
self.assertEqual(last["output_sizes"], ((3, 4),))
self.assertEqual(last["output_dtypes"], ["Float"])
self.assertEqual(last["timeout_ms"], 600000)
self.assertEqual(last["collective_seq_id"] - first["collective_seq_id"], 9)
dist.destroy_process_group()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_barrier_profiling(self):
os.environ["TORCH_NCCL_TRACE_BUFFER_SIZE"] = "10"
if self.rank == self.MAIN_PROCESS_RANK:
return
pg = self._create_process_group_nccl()
device = self.local_device
a = torch.full((3, 4), float(self.rank), device=device)
f = pg.barrier()
f = pg.allreduce(a)
f.wait()
torch.cuda.synchronize(device=device)
t = pickle.loads(torch._C._distributed_c10d._dump_nccl_trace())
t = t["entries"]
self.assertEqual(len(t), 2)
first = t[0]
last = t[-1]
self.assertEqual(first["profiling_name"], "nccl:all_reduce_barrier")
self.assertEqual(last["profiling_name"], "nccl:all_reduce")
dist.destroy_process_group()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_trace_while_all_works_retired(self):
os.environ["TORCH_NCCL_TRACE_BUFFER_SIZE"] = "10"
if self.rank == self.MAIN_PROCESS_RANK:
return
pg = self._create_process_group_nccl()
device = self.local_device
# send more works than the buffer size to overwrite the previous entry
for i in range(12):
a = [torch.ones(3, 4, device=device)]
pg.broadcast(a).wait()
torch.cuda.synchronize(device=device)
# wait for all works to be retired
pg._wait_for_pending_works()
t = pickle.loads(torch._C._distributed_c10d._dump_nccl_trace())
t = t["entries"]
self.assertEqual(len(t), 10)
last = t[-1]
self.assertEqual(last["retired"], True)
self.assertEqual(last["state"], "completed")
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("timing_enabled", [True, False])
@parametrize("only_active", [True, False])
def test_trace_while_active(self, timing_enabled, only_active):
if self.rank == self.MAIN_PROCESS_RANK:
for c in self.children_pipes:
self.assertEqual(c.recv(), "next")
for c in self.children_pipes:
c.send("next")
return
pg = self._create_process_group_nccl()
if timing_enabled:
pg._enable_collectives_timing()
device = self.local_device
with torch.cuda.device(device):
a = torch.full((3, 4), float(self.rank), device=device)
pg.allreduce(a).wait()
e = torch.cuda.Event()
e.record()
if self.rank != 0:
pg.allreduce(a).wait()
e.synchronize()
t = pickle.loads(
torch._C._distributed_c10d._dump_nccl_trace(onlyActive=only_active)
)
t = t["entries"]
if only_active:
if self.rank == 0:
self.assertEqual(len(t), 0)
else:
self.assertEqual(len(t), 1)
if not only_active:
if self.rank == 0:
self.assertEqual(t[-1]["profiling_name"], "nccl:all_reduce")
self.assertEqual(t[-1]["collective_seq_id"], 1)
self.assertEqual(t[-1]["state"], "completed")
else:
self.assertEqual(t[-1]["profiling_name"], "nccl:all_reduce")
self.assertEqual(t[-1]["collective_seq_id"], 2)
self.assertEqual(
t[-1]["state"], self.started_or_scheduled(timing_enabled)
)
self.parent.send("next")
self.assertEqual("next", self.parent.recv())
if self.rank == 0:
pg.allreduce(a).wait()
torch.cuda.synchronize(device=device)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize("timing_enabled", [True, False])
def test_trace_while_stuck(self, timing_enabled):
if self.rank == self.MAIN_PROCESS_RANK:
for c in self.children_pipes:
self.assertEqual(c.recv(), "next")
for c in self.children_pipes:
c.send("next")
return
pg = self._create_process_group_nccl()
if timing_enabled:
pg._enable_collectives_timing()
device = self.local_device
with torch.cuda.device(device):
a = torch.full((3, 4), float(self.rank), device=device)
pg.allreduce(a).wait()
e = torch.cuda.Event()
e.record()
def gather_trace():
e.synchronize()
# give the other thread some time to fill the cuda buffer
time.sleep(5)
t = pickle.loads(torch._C._distributed_c10d._dump_nccl_trace())
t = t["entries"]
self.assertEqual(t[-1]["profiling_name"], "nccl:all_reduce")
if self.rank == 0:
self.assertEqual(t[-1]["collective_seq_id"], 1)
self.assertEqual(t[-1]["state"], "completed")
else:
self.assertEqual(t[-1]["collective_seq_id"], 2)
self.assertEqual(
t[-1]["state"], self.started_or_scheduled(timing_enabled)
)
self.assertIsNone(t[-1]["time_discovered_completed_ns"])
# this will eventually cause the missing rank 0
# to continue which will unblock the non-zero ranks
self.parent.send("next")
if self.rank != 0:
pg.allreduce(a).wait()
th = threading.Thread(target=gather_trace)
th.start()
# fill the cuda buffer, at around 1024 events
# this will stall
for i in range(2000):
a = a + a
th.join()
else:
gather_trace()
self.assertEqual("next", self.parent.recv())
if self.rank == 0:
pg.allreduce(a).wait()
torch.cuda.synchronize(device=device)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize(
"op_sizes_per_coalesce",
[
[(2, 3)],
[(2, 3), (5, 5), (1,)],
],
)
@parametrize("timing_enabled", [True, False])
def test_batched_send_recv(self, op_sizes_per_coalesce, timing_enabled):
"""
'WorkEnqueue' was skipped for isendirecv, leading to segfault on dump_entries when update_state tried to use
a destructed Work obj's cuda events
"""
if self.rank == self.MAIN_PROCESS_RANK:
return
pg = self._create_process_group_nccl()
if timing_enabled:
pg._enable_collectives_timing()
num_coalesced_ops = 20
ops_per_coalesce = len(op_sizes_per_coalesce)
for i in range(num_coalesced_ops):
ops = []
for input_sizes in op_sizes_per_coalesce:
tensor = torch.zeros(input_sizes).to(self.local_device)
if self.rank == 0:
ops.append(dist.P2POp(dist.irecv, tensor, 1))
elif self.rank == 1:
tensor *= 2
ops.append(dist.P2POp(dist.isend, tensor, 0))
dist.batch_isend_irecv(ops).pop().wait()
torch.cuda.synchronize(device=self.local_device)
if timing_enabled:
# wait for watchdog thread to process the queue of works
time.sleep(1)
t = pickle.loads(torch._C._distributed_c10d._dump_nccl_trace())
self.assertEqual(len(t["entries"]), num_coalesced_ops * (ops_per_coalesce + 1))
expected_record_id = 0
expected_seq = 1
expected_op_id = 1
for seq in range(num_coalesced_ops):
first_op = seq * (ops_per_coalesce + 1)
coalesced_op = first_op + ops_per_coalesce
for p2p_op_idx, input_sizes in zip(
range(first_op, coalesced_op, 1), op_sizes_per_coalesce
):
# the indivudal ops inside the coalescing group the individual op metadata,
# but not the timing info coming from the actual coalesced kernel
profiling_name = (
"nccl:recv 0<-1" if self.rank == 0 else "nccl:send 1->0"
)
self.assertEqual(
t["entries"][p2p_op_idx]["record_id"], expected_record_id
)
expected_record_id += 1
self.assertEqual(
t["entries"][p2p_op_idx]["profiling_name"], profiling_name
)
# we don't increment collective_seq_id for p2p ops.
self.assertEqual(t["entries"][p2p_op_idx]["collective_seq_id"], 0)
self.assertEqual(t["entries"][p2p_op_idx]["p2p_seq_id"], expected_seq)
self.assertEqual(t["entries"][p2p_op_idx]["op_id"], expected_op_id)
expected_op_id += 1
self.assertEqual(t["entries"][p2p_op_idx]["input_sizes"], [input_sizes])
self.assertEqual(
t["entries"][p2p_op_idx]["output_sizes"], [input_sizes]
)
# duration doesn't get tagged onto individual ops yet, nor is their state updated
self.assertEqual(t["entries"][p2p_op_idx]["state"], "scheduled")
self.assertTrue("duration_ms" not in t["entries"][p2p_op_idx])
# the coalesced op has no metadata but indicates that coalescing was used,
# and accurately reflects the timing and state info for the whole group
self.assertEqual(
t["entries"][coalesced_op]["record_id"], expected_record_id
)
expected_record_id += 1
self.assertEqual(
t["entries"][coalesced_op]["profiling_name"], "nccl:coalesced"
)
self.assertEqual(t["entries"][coalesced_op]["p2p_seq_id"], expected_seq)
expected_seq += 1
self.assertEqual(t["entries"][coalesced_op]["state"], "completed")
self.assertEqual(t["entries"][coalesced_op]["input_sizes"], [])
self.assertEqual(t["entries"][coalesced_op]["output_sizes"], [])
if timing_enabled:
duration = t["entries"][coalesced_op]["duration_ms"]
self.assertTrue(0.001 < duration < 10000, duration)
else:
self.assertTrue("duration_ms" not in t["entries"][coalesced_op])
self.assertEqual(t["entries"][coalesced_op]["timeout_ms"], 600000)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@parametrize(
"op_sizes",
[
[(2, 3)],
[(2, 3), (5, 5), (1,)],
],
)
@parametrize("timing_enabled", [True, False])
def test_individual_send_recv(self, op_sizes, timing_enabled):
"""
'WorkEnqueue' was skipped for isendirecv, leading to segfault on dump_entries when update_state tried to use
a destructed Work obj's cuda events
"""
if self.rank == self.MAIN_PROCESS_RANK:
return
pg = self._create_process_group_nccl()
if timing_enabled:
pg._enable_collectives_timing()
num_repeats = 10
ops_per_repeat = len(op_sizes)
for i in range(num_repeats):
for input_sizes in op_sizes:
tensor = torch.zeros(input_sizes).to(self.local_device)
if self.rank == 0:
dist.recv(tensor, 1)
elif self.rank == 1:
tensor *= 2
dist.send(tensor, 0)
torch.cuda.synchronize(device=self.local_device)
if timing_enabled:
# wait for watchdog thread to process the queue of works
time.sleep(1)
t = pickle.loads(torch._C._distributed_c10d._dump_nccl_trace())
self.assertEqual(len(t["entries"]), num_repeats * (ops_per_repeat))
expected_seq = 1
expected_op_id = 1
for seq in range(num_repeats * ops_per_repeat):
input_sizes = op_sizes[seq % ops_per_repeat]
profiling_name = "nccl:recv 0<-1" if self.rank == 0 else "nccl:send 1->0"
self.assertEqual(t["entries"][seq]["profiling_name"], profiling_name)
# we don't increment collective_seq_id for p2p ops.
self.assertEqual(t["entries"][seq]["collective_seq_id"], 0)
self.assertEqual(t["entries"][seq]["p2p_seq_id"], expected_seq)
expected_seq += 1
self.assertEqual(t["entries"][seq]["op_id"], expected_op_id)
expected_op_id += 1
self.assertEqual(t["entries"][seq]["input_sizes"], [input_sizes])
self.assertEqual(t["entries"][seq]["output_sizes"], [input_sizes])
self.assertEqual(t["entries"][seq]["state"], "completed")
if timing_enabled:
duration = t["entries"][seq]["duration_ms"]
self.assertTrue(0.001 < duration < 10000, duration)
else:
self.assertTrue("duration_ms" not in t["entries"][seq])
# TODO(whc) support and test coalesced collectives that use the c++ start/end group thingy instead of python
# coalescing manager
# TODO(whc) test out other ops (And combinations of ops, if that's valid?)
@requires_nccl()
@skip_if_lt_x_gpu(2)
@parametrize("timing_enabled", [True, False])
def test_coalescing_manager_collective(self, timing_enabled):
"""
The coalescing manager api works by accumulating operations in python via a contextmanager, and then making
one call into c++ to an <op>_coalesced API. It has limited support for ops and has been added recently to
avoid overheads of making individual py-cpp calls. This complicates flight recording..
For now, flight recording of coalescing_manager collectives is less detailed than cpp coalesced collectives.
"""
if self.rank == self.MAIN_PROCESS_RANK:
return
pg = self._create_process_group_nccl()
if timing_enabled:
pg._enable_collectives_timing()
output_tensors = torch.zeros(2, 2).to(self.rank)
input_tensors = [torch.ones(2, 2).to(self.rank) for _ in range(self.world_size)]
# TODO(whc) make this work with bigger world or something
self.assertEqual(self.world_size, 2, self.world_size)
with dist._coalescing_manager():
for i in range(self.world_size):
dist.reduce_scatter_tensor(output_tensors[i], input_tensors[i])
self.assertEqual(output_tensors, input_tensors[self.rank] * self.world_size)
torch.cuda.synchronize(device=self.rank)
if timing_enabled:
# wait for watchdog thread to process the queue of works
time.sleep(1)
t = pickle.loads(torch._C._distributed_c10d._dump_nccl_trace())
self.assertEqual(
len(t["entries"]), 1
) # one for the reduce_scatter_tensor_coalesced
self.assertEqual(
t["entries"][0]["profiling_name"], "nccl:reduce_scatter_tensor_coalesced"
)
# collective_seq_id should be incremented once.
self.assertEqual(t["entries"][0]["collective_seq_id"], 1)
self.assertEqual(t["entries"][0]["input_sizes"], [[2, 2], [2, 2]])
self.assertEqual(
t["entries"][0]["output_sizes"],
[
[
2,
],
[
2,
],
],
)
self.assertEqual(t["entries"][0]["state"], "completed")
if timing_enabled:
duration = t["entries"][0]["duration_ms"]
self.assertTrue(0.001 < duration < 10000, duration)
else:
self.assertTrue("duration_ms" not in t["entries"][0])
def check_if_test_is_skipped(fn):
def wrapper(self, *args, **kwargs):
for skip in TEST_SKIPS.values():
if self.processes[0].exitcode == skip.exit_code:
return MultiProcessTestCase._check_return_codes(self, *args, **kwargs)
return fn(self, *args, **kwargs)
return wrapper
class NCCLTraceTestDumpOnTimeoutBase(NCCLTraceTestBase):
timeout_sec = 1
def _create_process_group_nccl(self):
store = dist.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
timeout=timedelta(seconds=NCCLTraceTestDumpOnTimeoutBase.timeout_sec),
)
pg = c10d.distributed_c10d._get_default_group()
return pg
@check_if_test_is_skipped
def _check_return_codes(self, elapsed_time):
# the base test infra assumes processes exit with matching return codes,
# but we want rank0 to abort and rank1 to exit cleanly in this test
self.assertEqual(self.processes[0].exitcode, -6)
self.assertEqual(self.processes[1].exitcode, 0)
def _wait_process(self, rank, timeout):
try:
self.processes[rank].join(timeout)
return self.processes[rank].exitcode
except TimeoutError:
return None
@skip_but_pass_in_sandcastle
class NCCLTraceTestDumpOnTimeout(NCCLTraceTestDumpOnTimeoutBase):
@requires_nccl()
@skip_if_lt_x_gpu(2)
@parametrize("timing_enabled", [True, False])
def test_timeout_dumps(self, timing_enabled):
# dump on heartbeatmonitor thread
os.environ["TORCH_NCCL_COORD_CHECK_MILSEC"] = "1000"
# need rank0 to crash before looking for its output file
os.environ["TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC"] = "1"
if self.rank == self.MAIN_PROCESS_RANK:
# wait for rank0 to crash before looking for its output file
# we rely on rank0 holding off its abort long enough to dump the debug info
self.assertEqual(self._wait_process(0, timeout=90), -6)
with open(self._trace_name(rank=0), "rb") as f:
t = pickle.load(f)
t = t["entries"]
self.assertEqual(len(t), 2)
self.assertEqual(t[0]["collective_seq_id"], 1)
self.assertEqual(t[0]["state"], "completed")
self.assertEqual(t[1]["collective_seq_id"], 2)
self.assertEqual(
t[1]["state"], self.started_or_scheduled(timing_enabled)
)
self.assertFalse(os.path.exists(self._trace_name(rank=1)))
return
pg = self._create_process_group_nccl()
if timing_enabled:
# we force disabled timing in setup, since there is no 'disable' function
pg._enable_collectives_timing()
device = self.local_device
with torch.cuda.device(device):
a = torch.full((3, 4), float(self.rank), device=device)
pg.allreduce(a).wait()
if self.rank == 0:
pg.allreduce(a).wait()
# rank 0 will crash before it passes the sync, but rank1 will exit quickly and cleanly
torch.cuda.synchronize(device=device)
instantiate_parametrized_tests(ProcessGroupNCCLGroupTest)
instantiate_parametrized_tests(NCCLTraceTestDumpOnTimeout)
instantiate_parametrized_tests(NCCLTraceTest)
@skip_but_pass_in_sandcastle
class NCCLTraceTestTimeoutDumpOnStuckRanks(NCCLTraceTestDumpOnTimeoutBase):
@check_if_test_is_skipped
def _check_return_codes(self, elapsed_time):
# the base test infra assumes processes exit with matching return codes,
# but we want rank0 to abort and rank1 to exit cleanly in this test
self.assertEqual(self.processes[0].exitcode, -6)
self.assertEqual(self.processes[1].exitcode, -6)
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_timeout_dumps_on_stuck_ranks(self):
# need rank0 to crash quicker after detecting timeout
os.environ["TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC"] = "1"
# restore this env var to its prior default in case another test changed it
os.environ["TORCH_NCCL_COORD_CHECK_MILSEC"] = "1000"
if self.rank == self.MAIN_PROCESS_RANK:
# wait for both rank0 and 1 to crash before looking for both ranks' output
# file, and we rely on rank1 to sleep long enough to dump the debug info.
self.assertEqual(self._wait_process(0, timeout=90), -6)
self.assertEqual(self._wait_process(1, timeout=90), -6)
self.assertTrue(os.path.exists(self._trace_name(rank=1)))
self.assertTrue(os.path.exists(self._trace_name(rank=0)))
with open(self._trace_name(rank=0), "rb") as f:
t = pickle.load(f)
t = t["entries"]
self.assertEqual(len(t), 2)
with open(self._trace_name(rank=1), "rb") as f:
t = pickle.load(f)
t = t["entries"]
self.assertEqual(len(t), 1)
self.assertEqual(t[0]["collective_seq_id"], 1)
self.assertEqual(t[0]["state"], "completed")
return
pg = self._create_process_group_nccl()
device = self.local_device
with torch.cuda.device(device):
a = torch.full((3, 4), float(self.rank), device=device)
pg.allreduce(a).wait()
if self.rank == 0:
pg.allreduce(a).wait()
# rank 0 will get stuck, timeout and then signal a timeout to all ranks.
torch.cuda.synchronize(device=device)
if self.rank == 1:
# Force rank 1 to idle so that it will eventually timeout as well after
# getting the global signal to dump the debugging info.
time.sleep(600)
@skip_but_pass_in_sandcastle
class NcclErrorDumpTest(NCCLTraceTestBase):
def _wait_process(self, rank, timeout):
try:
self.processes[rank].join(timeout)
return self.processes[rank].exitcode
except TimeoutError:
return None
@check_if_test_is_skipped
def _check_return_codes(self, elapsed_time):
# the base test infra assumes processes exit with matching return codes,
# but we want rank0 to abort with exception and rank1 to exit with exit 1
self.assertEqual(self.processes[0].exitcode, -6)
self.assertEqual(self.processes[1].exitcode, 1)
@requires_nccl()
@requires_nccl_version((2, 4, 0), "Need NCCL 2.4+ for error checking")
@skip_if_lt_x_gpu(2)
@skip_if_rocm_multiprocess
def test_nccl_errors_dump(self):
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1"
os.environ["TORCH_NCCL_TRACE_BUFFER_SIZE"] = "1000"
os.environ["TORCH_NCCL_DUMP_ON_TIMEOUT"] = "1"
# need rank0 to dump before abort
os.environ["TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC"] = "5"
if self.rank == self.MAIN_PROCESS_RANK:
# wait for both rank0 and 1 to crash before looking for dump
self.assertEqual(self._wait_process(0, timeout=90), -6)
self.assertEqual(self._wait_process(1, timeout=90), 1)
# verify that the trace file exists for rank0
self.assertTrue(os.path.exists(self._trace_name(rank=0)))
return
store = c10d.FileStore(self.file_name, self.world_size)
process_group = c10d.ProcessGroupNCCL(
store,
self.rank,
self.world_size,
timeout=timedelta(seconds=10),
)
process_group.allreduce(torch.rand(10).cuda(self.rank))
if self.rank == 0:
work = process_group.allreduce(torch.rand(10).cuda(self.rank))
# expect an error to be raised
with self.assertRaisesRegex(dist.DistBackendError, ""):
# Block the current stream on the NCCL stream
work.wait()
# Run some GPU operations
a = torch.rand(10).cuda(self.rank)
elif self.rank == 1:
# Clean up structures (ex: files for FileStore before going down)
del process_group
sys.exit(1)
# tests that needs to be run with a larger world size
class ProcessGroupNCCLLargerScaleTest(MultiProcessTestCase):
def _create_process_group_nccl(self, store, opts, device_id=None):
# create nccl processgroup with opts
c10d.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
pg_options=opts,
device_id=device_id,
)
pg = c10d.distributed_c10d._get_default_group()
return pg
def opts(self, high_priority_stream=False):
opts = c10d.ProcessGroupNCCL.Options()
opts.is_high_priority_stream = high_priority_stream
return opts
def setUp(self):
super().setUp()
# TORCH_NCCL_BLOCKING_WAIT overrides TORCH_NCCL_ASYNC_ERROR_HANDLING hence tests
# that use TORCH_NCCL_BLOCKING_WAIT will test it as expected.
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1"
# self.num_gpus = torch.cuda.device_count()
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
@property
def world_size(self):
return 8
@property
def rank_to_GPU(self):
# return rank to GPU map
return init_multigpu_helper(self.world_size, "nccl")
@requires_nccl_version((2, 18), "Need NCCL 2.18+ for ncclCommSplit")
@skip_if_lt_x_gpu(8)
def test_comm_split_group_larger_scale(self):
store = c10d.FileStore(self.file_name, self.world_size)
device = torch.device(f"cuda:{self.rank}")
pg = self._create_process_group_nccl(store, self.opts(), device_id=device)
backend = pg._get_backend(torch.device(device))
tensor = torch.full((1,), self.rank).cuda(device)
ng1 = c10d.split_group(pg, [[0, 1], [2, 3, 4, 5, 6, 7]])
backend1 = ng1._get_backend(torch.device(device))
# comm split happens eagerly since device_id is passed to init_process_group.
self.assertEqual(backend.comm_split_count(), 1)
# dist.broadcast take Source rank on global process group
if self.rank < 2:
dist.broadcast(tensor, 0, group=ng1)
self.assertEqual(tensor, torch.full((1,), 0))
else:
dist.broadcast(tensor, 2, group=ng1)
self.assertEqual(tensor, torch.full((1,), 2))
# test split with only one colored group, other ranks should be no color split.
ng2 = c10d.split_group(pg, [[5, 6, 7]])
self.assertEqual(backend.comm_split_count(), 2)
if self.rank >= 5:
tensor2 = torch.full((1,), self.rank).cuda(device)
dist.broadcast(tensor2, 7, group=ng2)
self.assertEqual(tensor2, torch.full((1,), 7))
else:
self.assertEqual(ng2, None)
# a barrier and a cuda sync before destroying all pgs.
dist.barrier(pg)
torch.cuda.synchronize()
dist.destroy_process_group()
@requires_nccl_version((2, 18), "Need NCCL 2.18+ for ncclCommSplit")
@skip_if_lt_x_gpu(8)
def test_comm_recursive_split_group(self):
store = c10d.FileStore(self.file_name, self.world_size)
device = torch.device(f"cuda:{self.rank}")
pg = self._create_process_group_nccl(store, self.opts(), device_id=device)
backend = pg._get_backend(torch.device(device))
# split the default PG into 2 subgroups, each subgroup (ng1) has 4 ranks.
tensor1 = torch.full((1,), self.rank).cuda(device)
ng1 = c10d.split_group(pg, [[0, 1, 2, 3], [4, 5, 6, 7]])
backend1 = ng1._get_backend(torch.device(device))
if self.rank < 4:
dist.broadcast(tensor1, 0, group=ng1)
self.assertEqual(tensor1, torch.full((1,), 0))
else:
dist.broadcast(tensor1, 4, group=ng1)
self.assertEqual(tensor1, torch.full((1,), 4))
# comm split happens eagerly since device_id is passed to init_process_group.
self.assertEqual(backend.comm_split_count(), 1)
self.assertEqual(backend1.comm_split_count(), 0)
# further split ng1 into 2 subgroups, each subgroup (ng2) has 2 ranks.
tensor2 = torch.full((1,), self.rank).cuda(device)
ng2 = c10d.split_group(ng1, [[0, 1], [2, 3]])
backend2 = ng2._get_backend(torch.device(device))
self.assertEqual(backend.comm_split_count(), 1)
self.assertEqual(backend1.comm_split_count(), 1)
self.assertEqual(backend2.comm_split_count(), 0)
# execute collective calls within each 2-rank pg
if self.rank == 0 or self.rank == 1:
dist.broadcast(tensor2, 1, group=ng2)
self.assertEqual(tensor2, torch.full((1,), 1))
if self.rank == 2 or self.rank == 3:
dist.broadcast(tensor2, 2, group=ng2)
self.assertEqual(tensor2, torch.full((1,), 2))
if self.rank == 4 or self.rank == 5:
dist.broadcast(tensor2, 5, group=ng2)
self.assertEqual(tensor2, torch.full((1,), 5))
if self.rank == 6 or self.rank == 7:
dist.broadcast(tensor2, 6, group=ng2)
self.assertEqual(tensor2, torch.full((1,), 6))
# a barrier and a cuda sync before destroying all pgs.
dist.barrier(pg)
torch.cuda.synchronize()
dist.destroy_process_group()
if __name__ == "__main__":
assert (
not torch.cuda._initialized
), "test_distributed must not have initialized CUDA context on main process"
run_tests()
|