1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
|
# Owner(s): ["oncall: distributed"]
# This test file contains positive tests for c10d with NCCL backend.
# During the test, it is expected that ProcessGroup will not be aborted, destroyed or incur fatal error.
# Please be mindful of this when adding tests here.
# If you need to add tests for group creation, abort or destroy, please add tests in test_c10d_nccl.py.
# There are two ways to launch tests in this file:
# 1. Run this file directly with `python test_c10d_ops_nccl.py`
# 2. Use multi-process launcher, e.g. `torchrun --standalone --nproc-per-node 2 test_c10d_ops_nccl.py`
import math
import os
import sys
import tempfile
import torch
import torch.distributed as c10d
if not c10d.is_available() or not c10d.is_nccl_available():
print("c10d NCCL not available, skipping tests", file=sys.stderr)
sys.exit(0)
import torch.distributed as dist
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
init_multigpu_helper,
MultiProcContinousTest,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
skip_but_pass_in_sandcastle_if,
skipIfRocm,
TEST_WITH_DEV_DBG_ASAN,
)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip ASAN as torch + multiprocessing spawn have known issues", file=sys.stderr
)
sys.exit(0)
class ProcessGroupNCCLOpTest(MultiProcContinousTest):
@classmethod
def backend_str(cls) -> str:
return "nccl"
@classmethod
def opts(cls, high_priority_stream=False):
opts = c10d.ProcessGroupNCCL.Options()
opts.is_high_priority_stream = high_priority_stream
return opts
@property
def rank_to_GPU(self):
# return rank to GPU map
return init_multigpu_helper(self.world_size, "nccl")
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_empty_tensors(self):
pg = self.pg
local_device_idx = self.rank_to_GPU[self.rank][0]
xs = [torch.FloatTensor([]).cuda(local_device_idx)]
pg.broadcast(xs).wait()
self.assertEqual(0, xs[0].numel())
pg.allreduce(xs).wait()
self.assertEqual(0, xs[0].numel())
pg.reduce(xs).wait()
self.assertEqual(0, xs[0].numel())
ys = [
[
torch.FloatTensor([]).cuda(local_device_idx)
for _ in range(self.world_size)
]
]
pg.allgather(ys, xs).wait()
for y in ys[0]:
self.assertEqual(0, y.numel())
ys = [torch.FloatTensor([]).cuda(local_device_idx)]
xs = [
[
torch.FloatTensor([]).cuda(local_device_idx)
for _ in range(self.world_size)
]
]
pg.reduce_scatter(ys, xs).wait()
self.assertEqual(0, ys[0].numel())
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_broadcast_ops(self):
pg = self.pg
def broadcast(xs, rootRank, rootTensor):
opts = c10d.BroadcastOptions()
opts.rootRank = rootRank
opts.rootTensor = rootTensor
work = pg.broadcast(xs, opts)
work.wait()
return xs
# Every rank is root once
for i in range(self.world_size):
# Run with 1 input tensor
x = torch.tensor([self.rank]).cuda(self.rank_to_GPU[self.rank][0])
output = broadcast([x], i, 0)
self.assertEqual(torch.tensor([i]), output[0])
expected_tensor = torch.empty([i + 1, i + 1]).fill_(i + 1)
xs = [
torch.empty([i + 1, i + 1]).fill_(-1).cuda(device=device_idx)
for device_idx in self.rank_to_GPU[self.rank]
]
# test with multiple input tensors (multiple gpu in one rank)
for j in range(len(xs)):
if self.rank == i:
xs[j] = expected_tensor.cuda(device=self.rank_to_GPU[self.rank][j])
broadcast(xs, i, j)
for tensor in xs:
self.assertEqual(tensor, expected_tensor)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_sparse_allreduce_ops(self):
pg = self.pg
indices = torch.tensor([[0, 1]])
values = torch.tensor([[1, 2, 0], [4, 0, 6]])
sparse_tensor = torch.sparse_coo_tensor(indices, values, size=(2, 3)).to(
self.rank
)
# sparse allreduce call is wrapped in a try catch since the c10d API is only available in the nccl experimental branch
try:
tensor_list = [sparse_tensor]
work = pg.allreduce(tensor_list)
work.wait()
# tensor_list is a list of size 1, with the allreduce output as a dense tensor
a = torch.tensor([[2, 4, 0], [8, 0, 12]]).to(self.rank)
self.assertEqual(tensor_list[0], a)
except RuntimeError as e:
if "NCCL does not support all_reduce with sparse tensors" in str(e):
pass
else:
# Rethrow the exception if it's a different error
raise
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_allreduce_ops(self):
device_count = torch.cuda.device_count()
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def allreduce(tensors, op):
opts = c10d.AllreduceOptions()
opts.reduceOp = op
work = pg.allreduce(tensors, opts)
work.wait()
# Sum
tensors = [torch.tensor([self.rank + 1]).cuda(local_device_id)]
allreduce(tensors, c10d.ReduceOp.SUM)
ndev = self.world_size
self.assertEqual(
torch.tensor([ndev * (ndev + 1) // 2]),
tensors[0],
)
# Avg (only available for NCCL 2.10+)
if torch.cuda.nccl.version() >= (2, 10, 0):
tensors = [torch.tensor([self.rank + 1.0]).cuda(local_device_id)]
allreduce(tensors, c10d.ReduceOp.AVG)
ndev = self.world_size
self.assertEqual(
torch.tensor([ndev * (ndev + 1.0) / (2.0 * ndev)]),
tensors[0],
)
# Premul Sum
if torch.cuda.nccl.version() >= (2, 11, 1):
for dtype in torch.half, torch.float, torch.double:
for factor in (
3.0,
torch.tensor([5.0], device=local_device_id, dtype=dtype),
):
tensors = [
torch.tensor([self.rank + 1])
.cuda(local_device_id)
.to(dtype=dtype)
]
allreduce(tensors, c10d._make_nccl_premul_sum(factor))
self.assertEqual(
factor
* torch.tensor(
[self.world_size * (self.world_size + 1) / 2],
dtype=dtype,
device=local_device_id,
),
tensors[0],
)
# Product
tensors = [torch.tensor([self.rank + 1]).cuda(local_device_id)]
allreduce(tensors, c10d.ReduceOp.PRODUCT)
self.assertEqual(torch.tensor([math.factorial(self.world_size)]), tensors[0])
# Min
tensors = [torch.tensor([self.rank + 1]).cuda(local_device_id)]
allreduce(tensors, c10d.ReduceOp.MIN)
self.assertEqual(torch.tensor([1]), tensors[0])
# Max
tensors = [torch.tensor([self.rank + 1]).cuda(local_device_id)]
allreduce(tensors, c10d.ReduceOp.MAX)
self.assertEqual(torch.tensor([self.world_size]), tensors[0])
for op, err in zip(
(c10d.ReduceOp.BAND, c10d.ReduceOp.BOR, c10d.ReduceOp.BXOR),
("ReduceOp.BAND", "ReduceOp.BOR", "ReduceOp.BXOR"),
):
with self.assertRaisesRegex(ValueError, "Cannot use " + err + " with NCCL"):
allreduce(tensors, op)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_alltoall_ops_with_cudafree_race(self):
pg = self.pg
opts = c10d.AllToAllOptions()
local_device = f"cuda:{self.rank_to_GPU[self.rank][0]}"
torch.cuda.set_device(local_device)
input = torch.rand(1000, 1000, device=local_device)
output = torch.rand(1000, 1000, device=local_device)
race_tensors = []
# create some tensors to race with alltoall collective
for _ in range(10):
tmp = []
for i in range(5):
tmp.append(torch.rand(10 ** (3 + i), device=local_device))
race_tensors.append(tmp)
for i in range(10):
race_tensors.pop()
work = pg.alltoall_base(output, input, [], [], opts)
# this triggers cudaFree
torch.cuda.empty_cache()
work.wait()
torch.cuda.synchronize(device=local_device)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_allreduce_in_cudagraph(self):
pg = self.pg
local_device_idx = self.rank_to_GPU[self.rank][0]
with torch.cuda.device(local_device_idx):
xs = [torch.FloatTensor([1]).cuda(local_device_idx)]
# single warmup
pg.allreduce(xs).wait()
# 1 + 1 + ... = world_size
expected_val = self.world_size
self.assertEqual(xs[0].item(), expected_val)
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph):
pg.allreduce(xs).wait()
# Graph capture should not change the tensor value
self.assertEqual(xs[0].item(), expected_val)
graph.replay()
expected_val *= self.world_size
graph.replay()
expected_val *= self.world_size
self.assertEqual(xs[0].item(), expected_val)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@skipIfRocm()
def test_nccl_watchdog_cudagraph(self):
# test that the watchdog does not crash graphs with disallowed event query
pg = self.pg
rank = self.rank_to_GPU[self.rank][0]
with torch.cuda.device(rank):
for i in range(10):
xs = [torch.FloatTensor([1]).cuda(rank)]
ys = [torch.FloatTensor([4]).cuda(rank)]
for _ in range(30):
pg.allreduce(xs[0]).wait()
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph):
xs[0] += 0.0
pg.allreduce(xs[0]).wait()
pg.allreduce(xs[0]).wait()
pg.allreduce(xs[0]).wait()
xs[0] += 0.0
for _ in range(100):
graph.replay()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_reduce_ops(self):
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def reduce(xs, rootRank, rootTensor, op=None):
opts = c10d.ReduceOptions()
opts.rootRank = rootRank
opts.rootTensor = rootTensor
if op:
opts.reduceOp = op
work = pg.reduce(xs, opts)
work.wait()
# for every root tensor
for rt in range(self.world_size):
tensors = [torch.tensor([self.rank + 1]).cuda(local_device_id)]
reduce(tensors, rt, 0)
if self.rank == rt:
self.assertEqual(
torch.tensor([self.world_size * (self.world_size + 1) // 2]),
tensors[0],
)
else:
self.assertEqual(
torch.tensor([self.rank + 1]),
tensors[0],
)
for op, err in zip(
(c10d.ReduceOp.BAND, c10d.ReduceOp.BOR, c10d.ReduceOp.BXOR),
("ReduceOp.BAND", "ReduceOp.BOR", "ReduceOp.BXOR"),
):
with self.assertRaisesRegex(
ValueError, "Cannot use " + err + " with NCCL"
):
reduce(tensors, self.rank, rt, op)
# Premul sum
if torch.cuda.nccl.version() >= (2, 11, 1):
for factor in (3.0, torch.tensor([5.0], device=local_device_id)):
if isinstance(factor, torch.Tensor):
factor_ref = factor.cpu().item()
else:
factor_ref = factor
float_tensors = [
torch.tensor(
[self.rank + 1.0], device=f"cuda:{local_device_id}"
)
]
float_tensors_ref = [
torch.tensor(
[(self.rank + 1.0) * factor_ref],
device=f"cuda:{local_device_id}",
)
]
reduce(float_tensors_ref, rt, 0)
reduce(float_tensors, rt, 0, c10d._make_nccl_premul_sum(factor))
if self.rank == rt:
self.assertEqual(float_tensors_ref[0], float_tensors[0])
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_allgather_ops(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
def allgather(output_ts, input_ts):
work = pg.allgather(output_ts, input_ts)
return work.wait()
tensors = [torch.empty(2, 2).fill_(2).cuda(device=i) for i in local_device_ids]
output_tensors = []
expected_output = []
output_per_gpu = (
[torch.empty(2, 2).fill_(-1)] * len(local_device_ids) * self.world_size
)
expected_per_gpu = (
[torch.empty(2, 2).fill_(2)] * len(local_device_ids) * self.world_size
)
for gpu in local_device_ids:
output_tensors.append([t.cuda(device=gpu) for t in output_per_gpu])
expected_output.append([t.cuda(device=gpu) for t in expected_per_gpu])
result = allgather(output_tensors, tensors)
# Verification
self.assertEqual(output_tensors, expected_output)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_allgather_base_ops(self):
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def allgather_base(output_t, input_t):
work = pg._allgather_base(output_t, input_t)
work.wait()
# allgather_base is GPU number agnostic.
# Each rank contribute one tensor regardless of GPU counts
tensor = torch.tensor([self.rank]).cuda(local_device_id)
output_t = torch.empty((self.world_size), dtype=tensor.dtype).cuda(
local_device_id
)
allgather_base(output_t, tensor)
# Verification
self.assertEqual(torch.arange(self.world_size), output_t)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_allgather_base_basics(self):
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def allgather_base(output_t, input_t):
work = pg._allgather_base(output_t, input_t)
work.wait()
# anticipate an error
with self.assertRaisesRegex(
ValueError,
"output tensor size must be equal to world_size times input tensor size",
):
tensor = torch.tensor([self.rank]).cuda(local_device_id)
output_t = torch.empty((self.world_size + 1), dtype=tensor.dtype).cuda(
local_device_id
)
# fails the check because output_t is not correctly sized
allgather_base(output_t, tensor)
# anticipate an error
with self.assertRaisesRegex(
TypeError, "output tensor must have the same type as input tensor"
):
tensor = torch.tensor([self.rank], dtype=torch.float).cuda(local_device_id)
output_t = torch.empty((self.world_size + 1), dtype=torch.long).cuda(
local_device_id
)
# fails the check because the dtype is different
allgather_base(output_t, tensor)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_gather_ops(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
num_gpus = len(local_device_ids)
def gather(output_t, input_t, rootRank):
opts = c10d.GatherOptions()
opts.rootRank = rootRank
if rootRank == self.rank:
work = pg.gather(output_t, input_t, opts)
else:
work = pg.gather([], input_t, opts)
work.wait()
# init input
tensors = []
for device_id in local_device_ids:
tensors.append(torch.tensor([self.rank]).cuda(device_id))
# init output
output_ts = []
for idx in range(num_gpus):
gpu_idx = local_device_ids[idx]
output_ts.append([])
for rank in range(self.world_size):
output_ts[idx].append(torch.tensor([-1]).cuda(gpu_idx))
expected = [[torch.tensor([rank]) for rank in range(self.world_size)]]
for rank in range(self.world_size):
gather(output_ts, tensors, rank)
if rank == self.rank:
self.assertEqual(expected, output_ts)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_gather_stress(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
num_gpus = len(local_device_ids)
def gather(output_t, input_t, rootRank):
opts = c10d.GatherOptions()
opts.rootRank = rootRank
if rootRank == self.rank:
work = pg.gather(output_t, input_t, opts)
else:
work = pg.gather([], input_t, opts)
work.wait()
stress_length = 1000
# init input
tensors = []
for i in range(stress_length):
tensors.append([])
for device_id in local_device_ids:
tensors[i].append(torch.tensor([self.rank]).cuda(device_id))
# init output
output_ts = []
for i in range(stress_length):
output_ts.append([[] for _ in range(num_gpus)])
for idx, ls in enumerate(output_ts[i]):
gpu_idx = local_device_ids[idx]
for _ in range(self.world_size):
ls.append(torch.tensor([-1]).cuda(gpu_idx))
expected = [[torch.tensor([rank]) for rank in range(self.world_size)]]
for i in range(stress_length):
for rank in range(self.world_size):
gather(output_ts[i], tensors[i], rank)
# Verification
if rank == self.rank:
self.assertEqual(output_ts[i], expected)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_gather_checks(self):
pg = self.pg
device_id = self.rank_to_GPU[self.rank][0]
# init input
tensor = torch.tensor([self.rank]).cuda(device_id)
# init output
output_ts = []
for rank in range(self.world_size):
output_ts.append(torch.tensor([-1]).cuda(device_id))
with self.assertRaisesRegex(ValueError, "invalid root rank"):
opts = c10d.GatherOptions()
opts.rootRank = -1
pg.gather([output_ts], [tensor], opts)
with self.assertRaisesRegex(TypeError, "incompatible function arguments"):
pg.gather([output_ts], [tensor], 0)
with self.assertRaisesRegex(ValueError, "invalid root rank"):
opts = c10d.GatherOptions()
opts.rootRank = self.world_size
pg.gather([output_ts], [tensor], opts)
with self.assertRaisesRegex(
# throws error message from dispatcher
RuntimeError,
"There were no tensor arguments to this function",
):
opts = c10d.GatherOptions()
opts.rootRank = 0
pg.gather([output_ts], [], opts)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_scatter_ops(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
num_gpus = len(local_device_ids)
def scatter(output_t, input_t, rootRank):
opts = c10d.ScatterOptions()
opts.rootRank = rootRank
if rootRank == self.rank:
work = pg.scatter(output_t, input_t, opts)
else:
work = pg.scatter(output_t, [], opts)
work.wait()
# init output
tensors = []
for device_id in local_device_ids:
tensors.append(torch.tensor([-1]).cuda(device_id))
# init input
scatter_list = []
for idx in range(num_gpus):
gpu_idx = local_device_ids[idx]
scatter_list.append([])
for rank in range(self.world_size):
scatter_list[idx].append(torch.tensor([rank]).cuda(gpu_idx))
# test each rank to scatter
expected = [torch.tensor([self.rank])]
for rank in range(self.world_size):
scatter(tensors, scatter_list, rank)
self.assertEqual(expected, tensors)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_scatter_stress(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
num_gpus = len(local_device_ids)
def scatter(output_t, input_t, rootRank):
opts = c10d.ScatterOptions()
opts.rootRank = rootRank
if rootRank == self.rank:
work = pg.scatter(output_t, input_t, opts)
else:
work = pg.scatter(output_t, [], opts)
work.wait()
stress_length = 1000
# init output
tensors = []
for i in range(stress_length):
tensors.append([])
for device_id in local_device_ids:
tensors[i].append(torch.tensor([-1]).cuda(device_id))
# init input
scatter_list = []
for i in range(stress_length):
scatter_list.append([[] for _ in range(num_gpus)])
for idx, ls in enumerate(scatter_list[i]):
gpu_idx = local_device_ids[idx]
for rank in range(self.world_size):
ls.append(torch.tensor([rank]).cuda(gpu_idx))
# test each rank to scatter
expected = [torch.tensor([self.rank])]
for i in range(stress_length):
for rank in range(self.world_size):
scatter(tensors[i], scatter_list[i], rank)
# Verification
self.assertEqual(tensors[i], expected)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_scatter_checks(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
num_gpus = len(local_device_ids)
# init output
tensors = []
for device_id in local_device_ids:
tensors.append(torch.tensor([-1]).cuda(device_id))
# init input
scatter_list = []
for idx in range(num_gpus):
gpu_idx = local_device_ids[idx]
scatter_list.append([])
for rank in range(self.world_size):
scatter_list[idx].append(torch.tensor([rank]).cuda(gpu_idx))
with self.assertRaisesRegex(ValueError, "invalid root rank"):
opts = c10d.ScatterOptions()
opts.rootRank = -1
pg.scatter(tensors, scatter_list, opts)
with self.assertRaisesRegex(TypeError, "incompatible function arguments"):
pg.scatter(tensors, scatter_list, 0)
with self.assertRaisesRegex(ValueError, "invalid root rank"):
opts = c10d.ScatterOptions()
opts.rootRank = self.world_size
pg.scatter(tensors, scatter_list, opts)
with self.assertRaisesRegex(
# throws error message from dispatcher
RuntimeError,
"There were no tensor arguments to this function",
):
opts = c10d.ScatterOptions()
opts.rootRank = 0
pg.scatter([], scatter_list, opts)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_reduce_scatter_base_basics(self):
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def reduce_scatter_base(output_t, input_t):
work = pg._reduce_scatter_base(output_t, input_t)
work.wait()
# anticipate an error
with self.assertRaisesRegex(
ValueError,
"input tensor must be the same size as output size times world size",
):
input_t = torch.tensor([self.rank]).cuda(local_device_id)
output_t = torch.empty((self.world_size + 1), dtype=input_t.dtype).cuda(
local_device_id
)
# fails the check because output_t is not correctly sized
reduce_scatter_base(output_t, input_t)
# anticipate an error
with self.assertRaisesRegex(
TypeError, "input tensor must be the same type as the output tensor."
):
tensor = torch.tensor([self.rank], dtype=torch.float).cuda(local_device_id)
output_t = torch.empty((self.world_size + 1), dtype=torch.long).cuda(
local_device_id
)
# fails the check because the dtype is different
reduce_scatter_base(output_t, tensor)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_reduce_scatter_ops(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
num_gpus = len(local_device_ids)
def reduce_scatter(outputs, input_lists, op):
opts = c10d.ReduceScatterOptions()
opts.reduceOp = op
work = pg.reduce_scatter(outputs, input_lists, opts)
work.wait()
output = [torch.tensor([0]).cuda(i) for i in local_device_ids]
# GPU/rank
# 0 [1], [2], [3], [4]
# 1 [2], [3], [4], [5]
# 2 [3], [4], [5], [6]
# 3 [4], [5], [6], [7]
# Sum
tensor_lists = []
input_per_gpu = []
for i in range(self.world_size):
input_per_gpu.append(torch.tensor([self.rank + i + 1]))
for gpu in local_device_ids:
tensor_lists.append([t.cuda(device=gpu) for t in input_per_gpu])
reduce_scatter(output, tensor_lists, c10d.ReduceOp.SUM)
for i in range(num_gpus):
expected = torch.tensor(
[
(1 + self.world_size) * self.world_size // 2
+ self.world_size * self.rank
]
)
self.assertEqual(expected, output[i])
# Min
reduce_scatter(output, tensor_lists, c10d.ReduceOp.MIN)
for i in range(num_gpus):
expected = torch.tensor([self.rank + 1 + i])
self.assertEqual(expected, output[i])
# Max
reduce_scatter(output, tensor_lists, c10d.ReduceOp.MAX)
for i in range(num_gpus):
expected = torch.tensor([self.rank + self.world_size + i])
self.assertEqual(expected, output[i])
# Product
reduce_scatter(output, tensor_lists, c10d.ReduceOp.PRODUCT)
# math package don't have math.perm until python 3.8, so
# we implement a naive version here.
def perm(n, k):
prod_val = n
for val in range(n - k + 1, n):
prod_val *= val
return prod_val
for i in range(num_gpus):
prod_val = perm(self.rank + self.world_size, self.world_size)
expected = torch.tensor([prod_val])
self.assertEqual(expected, output[i])
# Test the input params overridden scenarios, aka, when the input is
# a list and output is just one tensor.
# Sum
output_tensor = torch.empty_like(input_per_gpu[0][0]).cuda(self.rank)
input_list = [tensor[0].cuda(self.rank) for tensor in input_per_gpu]
pg.reduce_scatter(output_tensor, input_list, c10d.ReduceOp.SUM).wait()
expected = torch.tensor(
(1 + self.world_size) * self.world_size // 2 + self.world_size * self.rank
)
self.assertEqual(expected, output_tensor)
# Min
pg.reduce_scatter(output_tensor, input_list, c10d.ReduceOp.MIN).wait()
expected = torch.tensor(self.rank + 1)
self.assertEqual(expected, output_tensor)
# Max
pg.reduce_scatter(output_tensor, input_list, c10d.ReduceOp.MAX).wait()
expected = torch.tensor(self.rank + self.world_size)
self.assertEqual(expected, output_tensor)
# Product
pg.reduce_scatter(output_tensor, input_list, c10d.ReduceOp.PRODUCT).wait()
prod_val = self.rank + 1
for k in range(1, self.world_size):
prod_val = prod_val * (self.rank + 1 + k)
expected = torch.tensor(prod_val)
self.assertEqual(expected, output_tensor)
if torch.cuda.nccl.version() >= (2, 11, 1):
for factor in (3.0, torch.tensor([5.0], device=self.rank)):
if isinstance(factor, torch.Tensor):
factor_ref = factor.cpu().item()
else:
factor_ref = factor
output = [t.float() for t in output]
tensor_lists = [[t.float() for t in tl] for tl in tensor_lists]
output_ref = [t.float() for t in output]
tensor_lists_ref = [
[t.float() * factor_ref for t in tl] for tl in tensor_lists
]
reduce_scatter(output, tensor_lists, c10d._make_nccl_premul_sum(factor))
reduce_scatter(output_ref, tensor_lists_ref, c10d.ReduceOp.SUM)
self.assertEqual(output_ref, output)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_reduce_scatter_base_ops(self):
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def reduce_scatter_base(output_t, input_t):
work = pg._reduce_scatter_base(output_t, input_t)
work.wait()
# reduce_scatter_base is GPU number agnostic.
# Each rank contribute one tensor regardless of GPU counts
output_t = torch.empty([1]).cuda(local_device_id)
tensor = torch.arange(self.world_size, dtype=output_t.dtype).cuda(
local_device_id
)
reduce_scatter_base(output_t, tensor)
# Verification
self.assertEqual(output_t[0], self.rank * self.world_size)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_barrier(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
def allreduce(tensors):
opts = c10d.AllreduceOptions()
work = pg.allreduce(tensors, opts)
return work
# Making the collective to operate on
# 1, 2, 3, 4, .... len(local_device_ids) GPUs
tensors_list = [[] for _ in range(len(local_device_ids))]
for i in range(1, len(local_device_ids) + 1):
for j in range(i):
tensors_list[i - 1].append(
torch.tensor([j + 1]).cuda(local_device_ids[j])
)
works = []
for tensors in tensors_list:
work = allreduce(tensors)
works.append(work)
# Barrier will ensure that all previous work is completed
pg.barrier().wait()
for i in range(1, len(local_device_ids) + 1):
for j in range(i):
self.assertEqual(
torch.tensor([(j + 1) * self.world_size]), tensors_list[i - 1][j]
)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_send_recv(self):
pg = self.pg
device = self.rank_to_GPU[self.rank][0]
# Generate the same random tensor
torch.manual_seed(0)
send_tensor = torch.rand(10, 10, device=device)
if self.rank == 0:
dist.send(send_tensor, 1)
if self.rank == 1:
recv_tensor = torch.rand(10, 10, device=device)
dist.recv(recv_tensor, 0)
self.assertEqual(send_tensor, recv_tensor)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_send_recv_complex(self):
pg = self.pg
device = self.rank_to_GPU[self.rank][0]
# Generate the same random tensor
torch.manual_seed(0)
send_tensor = torch.rand(10, 10, dtype=torch.cfloat, device=device)
if self.rank == 0:
dist.send(send_tensor, 1)
if self.rank == 1:
recv_tensor = torch.rand(10, 10, dtype=torch.cfloat, device=device)
dist.recv(recv_tensor, 0)
self.assertEqual(send_tensor, recv_tensor)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_send_recv_object_list(self):
device = self.rank_to_GPU[self.rank][0]
val = 99 if self.rank == 0 else None
object_list = [val] * self.world_size
if self.rank == 0:
dist.send_object_list(object_list, 1, device=device)
if self.rank == 1:
dist.recv_object_list(object_list, 0, device=device)
self.assertEqual(object_list[0], 99)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_tensor_register_hook(self):
os.environ["TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK"] = "1"
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def allgather_base(output_t, input_t):
work = pg._allgather_base(output_t, input_t)
work.wait()
# allgather_base is GPU number agnostic.
# Each rank contribute one tensor regardless of GPU counts
tensor = torch.tensor([self.rank]).cuda(local_device_id)
output_t = torch.empty((self.world_size), dtype=tensor.dtype).cuda(
local_device_id
)
allgather_base(output_t, tensor)
# Verification
self.assertEqual(torch.arange(self.world_size), output_t)
# Unset env
del os.environ["TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK"]
if __name__ == "__main__":
if not torch.cuda.is_available():
sys.exit(TEST_SKIPS["no_cuda"].exit_code)
rank = int(os.getenv("RANK", -1))
world_size = int(os.getenv("WORLD_SIZE", -1))
if world_size == -1: # Not set by external launcher
world_size = torch.cuda.device_count()
if rank != -1:
# Launched with torchrun or other multi-proc launchers. Directly run the test.
ProcessGroupNCCLOpTest.run_rank(rank, world_size)
else:
# Launched as a single process. Spawn subprocess to run the tests.
# Also need a rendezvous file for `init_process_group` purpose.
rdvz_file = tempfile.NamedTemporaryFile(delete=False).name
torch.multiprocessing.spawn(
ProcessGroupNCCLOpTest.run_rank,
nprocs=world_size,
args=(world_size, rdvz_file),
)
|