1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
|
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
def _get_device_type(world_size):
if (
torch.cuda.is_available()
and torch.cuda.device_count() >= world_size
and is_nccl_available()
):
device_type = "cuda"
else:
device_type = "cpu"
return device_type
def _set_env_var(addr="localhost", port="25364", world_size=1, rank=0):
os.environ["MASTER_ADDR"] = addr
os.environ["MASTER_PORT"] = port
os.environ["WORLD_SIZE"] = f"{world_size}"
os.environ["RANK"] = f"{rank}"
class DeviceMeshTestGlooBackend(DTensorTestBase):
@property
def backend(self):
return "gloo"
@with_comms
def test_device_mesh_reuse_default_group(self):
mesh = init_device_mesh(self.device_type, (self.world_size,))
mesh_group = mesh.get_group()
default_group = _get_default_group()
if torch.cuda.is_available():
self.assertNotEqual(mesh_group, default_group)
self.assertEqual(get_world_size(mesh_group), get_world_size(default_group))
else:
self.assertEqual(mesh_group, default_group)
class DeviceMeshTest(DTensorTestBase):
@property
def world_size(self):
return 4
@skip_if_lt_x_gpu(4)
def test_init_process_group(self):
device_type = _get_device_type(self.world_size)
mesh_tensor = torch.arange(4).reshape(2, 2)
self.assertTrue(not is_initialized())
_set_env_var(world_size=self.world_size, rank=self.rank)
DeviceMesh(device_type, mesh_tensor)
self.assertTrue(is_initialized())
self.destroy_pg()
@with_comms
@skip_if_lt_x_gpu(4)
def test_assert_invalid_mesh_tensor(self):
mesh = torch.arange(self.world_size).to(self.rank)
with self.assertRaises(ValueError):
device_mesh = DeviceMesh(self.device_type, mesh)
@with_comms()
def test_2d_mesh_non_eager_init_subgroup(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(self.device_type, mesh_shape)
self.assertEqual(mesh_2d.get_group(0).bound_device_id, None)
self.assertEqual(mesh_2d.get_group(1).bound_device_id, None)
# TODO: need to refactor the other tests in this file to test both
# eager_init=True and eager_init=False scenarios.
@with_comms(eager_init=True)
def test_2d_mesh_eager_init_subgroup(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(self.device_type, mesh_shape)
# when eager init is used, the subgroup is created from nccl comm split and
# there would be bound_device_id immediately assigned for the subgroup.
if self.backend == "nccl":
curr_device = torch.cuda.current_device()
self.assertEqual(mesh_2d.get_group(0).bound_device_id.index, curr_device)
self.assertEqual(mesh_2d.get_group(1).bound_device_id.index, curr_device)
@with_comms()
def test_get_group_and_get_all_groups(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
)
tp_mesh = mesh_2d["tp"]
dp_mesh = mesh_2d["dp"]
self.assertEqual(mesh_2d.get_group(0), mesh_2d.get_group("dp"))
self.assertEqual(mesh_2d.get_group(1), mesh_2d.get_group("tp"))
self.assertEqual(mesh_2d.get_group("dp"), dp_mesh.get_group())
self.assertEqual(mesh_2d.get_group("tp"), tp_mesh.get_group())
groups = mesh_2d.get_all_groups()
self.assertEqual(len(groups), 2)
self.assertTrue(tp_mesh.get_group() in groups)
self.assertTrue(dp_mesh.get_group() in groups)
@with_comms
def test_get_local_rank_raises_exception(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
)
with self.assertRaisesRegex(
RuntimeError,
"Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.",
):
local_rank = mesh_2d.get_local_rank()
@with_comms
def test_get_local_rank(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
)
self.assertEqual(mesh_2d.get_local_rank("dp"), mesh_2d.get_local_rank(0))
self.assertEqual(mesh_2d.get_local_rank("tp"), mesh_2d.get_local_rank(1))
dp_mesh = mesh_2d["dp"]
tp_mesh = mesh_2d["tp"]
self.assertEqual(dp_mesh.get_local_rank(), mesh_2d.get_local_rank("dp"))
self.assertEqual(tp_mesh.get_local_rank(), mesh_2d.get_local_rank("tp"))
# Verify flattened mesh local rank correctness.
flattened_mesh = mesh_2d["dp", "tp"]._flatten()
self.assertEqual(flattened_mesh.get_local_rank(), self.rank)
@with_comms
def test_device_mesh_2d(self):
mesh_tensor = torch.arange(4).reshape(2, 2)
# construct a cuda device mesh
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
expected_ranks_by_dim = [[[0, 2], [1, 3]], [[0, 1], [2, 3]]]
for dim, dim_group in enumerate(dim_to_subgroups):
self.assertTrue(dim < 2)
dim_ranks = expected_ranks_by_dim[dim]
dim_group_size = get_world_size(dim_group)
self.assertIsInstance(dim_group, ProcessGroup)
self.assertEqual(dim_group_size, 2)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
current_rank_expected_group_ranks = (
dim_ranks[0] if self.rank in dim_ranks[0] else dim_ranks[1]
)
self.assertEqual(global_ranks, current_rank_expected_group_ranks)
@with_comms
def test_device_mesh_init_backend(self):
mesh = DeviceMesh(self.device_type, [1], _init_backend=False)
with self.assertRaisesRegex(RuntimeError, "process groups not initialized!"):
mesh.get_group()
# coordinates should always been populated when init_backend is False, as whenever
# we call init_backend we should make sure the default pg already created
mesh.get_coordinate()
def test_fake_pg_device_mesh(self):
fake_store = FakeStore()
init_process_group("fake", store=fake_store, rank=0, world_size=self.world_size)
device_type = "cuda" if torch.cuda.is_available() else "cpu"
mesh = DeviceMesh(device_type, torch.arange(self.world_size))
local_tensor = torch.randn(2, 8)
global_tensor = funcol.all_gather_tensor(
local_tensor, gather_dim=0, group=(mesh, 0)
)
self.assertEqual(global_tensor.shape, (self.world_size * 2, 8))
@with_comms
def test_from_group_with_global_pg(self):
# Simple test: check `from_group` from a mesh pg vs. directly
# initializing via `init_device_mesh`
ref_global_mesh = init_device_mesh(self.device_type, (self.world_size,))
mesh_pg = ref_global_mesh.get_group()
global_mesh = DeviceMesh.from_group(mesh_pg, self.device_type)
self.assertEqual(ref_global_mesh, global_mesh)
self.assertEqual(ref_global_mesh._dim_group_infos, global_mesh._dim_group_infos)
self.assertEqual(
ref_global_mesh._coordinate_on_dim, global_mesh._coordinate_on_dim
)
# Check when `mesh` is passed as well
global_mesh = DeviceMesh.from_group(
mesh_pg, self.device_type, mesh=torch.arange(self.world_size)
)
self.assertEqual(ref_global_mesh, global_mesh)
self.assertEqual(ref_global_mesh._dim_group_infos, global_mesh._dim_group_infos)
self.assertEqual(
ref_global_mesh._coordinate_on_dim, global_mesh._coordinate_on_dim
)
@with_comms
def test_from_group_with_invalid_mesh(self):
global_pg = _get_default_group()
global_pg_size = global_pg.size()
assert global_pg_size == 4, "Test assumes global world size of 4"
invalid_mesh = [[0, 1], [2, 3]] # 2D mesh when we need 1D
regex = r"Invalid mesh \[\[0, 1\], \[2, 3\]\] for ProcessGroup with ranks \[0, 1, 2, 3\]"
with self.assertRaisesRegex(ValueError, regex):
DeviceMesh.from_group(global_pg, "cuda", invalid_mesh)
device_mesh = init_device_mesh(self.device_type, (2, 2))
groups = device_mesh.get_all_groups()
invalid_mesh = (0, 1, 2, 3) # 1D mesh when we need 2D
regex = r"Expects mesh with ndim equal to number of ProcessGroups but got mesh \[0, 1, 2, 3\] and 2 ProcessGroups"
with self.assertRaisesRegex(ValueError, regex):
DeviceMesh.from_group(groups, self.device_type, invalid_mesh)
def test_raises_invalid_device_type(self):
with self.assertRaisesRegex(
RuntimeError,
"Device type with index is not supported",
):
# test init_device_mesh with an invalid device type that contains a GPU index
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
"cuda:0", mesh_shape=mesh_shape, mesh_dim_names=("dp", "tp")
)
@with_comms
def test_set_mesh_dim_group_options(self):
device_type = "cuda" if torch.cuda.is_available() else "cpu"
_mesh_resources._set_mesh_dim_group_options(1, "fake", None)
mesh_tensor = torch.arange(4).reshape(2, 2)
mesh = DeviceMesh(device_type, mesh_tensor)
# Fake pg only have BackendType as BackendType::CUSTOM.
self.assertEqual(mesh.get_group(1)._get_backend_name(), "custom")
class DeviceMeshTestNDim(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_device_mesh_nd(self):
# construct a cuda device mesh
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
self.assertTrue(dim < mesh_tensor.ndim)
dim_ranks = mesh_tensor.swapdims(-1, dim).reshape(-1, 2)
dim_group_size = get_world_size(dim_group)
self.assertIsInstance(dim_group, ProcessGroup)
self.assertEqual(dim_group_size, 2)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
for ranks in dim_ranks:
if self.rank in ranks:
self.assertEqual(global_ranks, ranks.tolist())
@with_comms
def test_device_mesh_hash(self):
mesh_tensor_2d = torch.arange(8).reshape(4, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor_2d)
mesh2 = DeviceMesh(self.device_type, mesh_tensor_2d)
self.assertEqual(hash(mesh), hash(mesh2))
mesh_tensor_3d = torch.arange(8).reshape(2, 2, 2)
mesh3 = DeviceMesh(self.device_type, mesh_tensor_3d)
self.assertNotEqual(hash(mesh), hash(mesh3))
self.assertNotEqual(hash(mesh2), hash(mesh3))
@with_comms
def test_get_local_rank_3d(self):
"""
If we have a 3D mesh and we want to apply dp, pp, tp to it,
mesh_dim_names = ["dp", "pp", "tp"], and the mesh tensor would be:
mesh_3d_tensor = [
[
[0, 1],
[2, 3],
],
[
[4, 5],
[6, 7],
]
]
"""
mesh_shape = (2, 2, 2)
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "pp", "tp")
)
# tp_rank_0: [0, 2, 4, 6], tp_rank_1: [1, 3, 5, 7]
tp_rank = mesh_3d.get_local_rank("tp")
expected_tp_rank = self.rank % 2
self.assertEqual(tp_rank, expected_tp_rank)
# pp_rank_0: [0, 1, 4, 5], pp_rank_1: [2, 3, 6, 7]
pp_rank = mesh_3d.get_local_rank("pp")
expected_pp_rank = 0 if self.rank % 4 <= 1 else 1
self.assertEqual(pp_rank, expected_pp_rank)
# dp_rank_0: [0, 1, 2, 3], dp_rank_1: [4, 5, 6, 7]
dp_rank = mesh_3d.get_local_rank("dp")
expected_dp_rank = self.rank // 4
self.assertEqual(dp_rank, expected_dp_rank)
@with_comms
def test_device_mesh_parent_child_hash(self):
mesh_2d = init_device_mesh(
self.device_type, (2, self.world_size // 2), mesh_dim_names=("DP", "TP")
)
mesh_group_1 = torch.arange(0, self.world_size // 2)
mesh_group_2 = torch.arange(self.world_size // 2, self.world_size)
ep_mesh_1 = DeviceMesh(self.device_type, mesh_group_1)
ep_mesh_2 = DeviceMesh(self.device_type, mesh_group_2)
ep_mesh = ep_mesh_1 if self.rank < self.world_size // 2 else ep_mesh_2
# ep_mesh is considered different from mesh_2d["TP"]
self.assertEqual(mesh_2d["TP"]._flatten_mesh_list, ep_mesh._flatten_mesh_list)
self.assertEqual(mesh_2d["TP"].mesh.shape, ep_mesh.mesh.shape)
self.assertEqual(mesh_2d["TP"].device_type, ep_mesh.device_type)
self.assertNotEqual(mesh_2d["TP"].mesh_dim_names, ep_mesh.mesh_dim_names)
self.assertEqual(mesh_2d["TP"]._thread_id, ep_mesh._thread_id)
self.assertNotEqual(hash(mesh_2d["TP"]), hash(ep_mesh))
self.assertNotEqual(mesh_2d["TP"], ep_mesh)
another_mesh_1 = DeviceMesh(self.device_type, mesh_group_1)
another_mesh_2 = DeviceMesh(self.device_type, mesh_group_2)
another_mesh = (
another_mesh_1 if self.rank < self.world_size // 2 else another_mesh_2
)
# another_mesh is considered the same as ep_mesh
self.assertEqual(ep_mesh._flatten_mesh_list, another_mesh._flatten_mesh_list)
self.assertEqual(ep_mesh.mesh.shape, another_mesh.mesh.shape)
self.assertEqual(ep_mesh.device_type, another_mesh.device_type)
self.assertEqual(ep_mesh.mesh_dim_names, another_mesh.mesh_dim_names)
self.assertEqual(ep_mesh._thread_id, another_mesh._thread_id)
self.assertEqual(hash(ep_mesh), hash(another_mesh))
self.assertEqual(ep_mesh, another_mesh)
@with_comms
def test_from_group_with_mesh_shape(self):
"""Tests ``from_group`` when passing ``mesh_shape`` as 2D."""
# Consider two different logical views of the same mesh:
# - (4, 2) ("dp", "tp") mesh
# - (2, 2, 2) ("dp_replicate", "dp_shard", "tp") mesh
mesh_shape = (2, 2, 2)
mesh_dim_names = ("dp_replicate", "dp_shard", "tp")
ref_mesh = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
dp_shard_group = ref_mesh["dp_shard"].get_group()
dp_replicate_group = ref_mesh["dp_replicate"].get_group()
dp_mesh = DeviceMesh.from_group(
[dp_replicate_group, dp_shard_group],
self.device_type,
mesh=ref_mesh.mesh[:, :, ref_mesh.get_local_rank(2)],
mesh_dim_names=mesh_dim_names[:2],
)
ref_mesh_dp_dim_group_infos = ref_mesh._dim_group_infos[:2]
for (_, ref_ranks, _), (_, ranks, _) in zip(
ref_mesh_dp_dim_group_infos, dp_mesh._dim_group_infos
):
self.assertEqual(ref_ranks, ranks)
# Cannot check directly for mesh equality since parent meshes are not
# the same since the ref's parent mesh is 3D
self.assertEqual(dp_mesh["dp_replicate"].mesh, ref_mesh["dp_replicate"].mesh)
for (_, ref_ranks, _), (_, ranks, _) in zip(
dp_mesh["dp_replicate"]._dim_group_infos,
ref_mesh["dp_replicate"]._dim_group_infos,
):
self.assertEqual(ref_ranks, ranks)
self.assertEqual(dp_mesh["dp_shard"].mesh, ref_mesh["dp_shard"].mesh)
for (_, ref_ranks, _), (_, ranks, _) in zip(
dp_mesh["dp_shard"]._dim_group_infos, ref_mesh["dp_shard"]._dim_group_infos
):
self.assertEqual(ref_ranks, ranks)
class InitDeviceMeshTest(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_init_device_mesh(self):
mesh_shape = (2, 4)
mesh_dim_names = ("DP", "TP")
ref_mesh = DeviceMesh(
self.device_type,
torch.arange(8).view(mesh_shape),
mesh_dim_names=mesh_dim_names,
)
# test init_device_mesh with mesh_dim_names
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
self.assertEqual(mesh_2d, ref_mesh)
self.assertEqual(mesh_2d.mesh_dim_names, mesh_dim_names)
@with_comms
def test_raises_duplicate_mesh_dim_names(self):
with self.assertRaisesRegex(
RuntimeError,
"Each mesh_dim_name must be unique.",
):
mesh = init_device_mesh(
self.device_type,
(2, 4),
mesh_dim_names=["dp", "dp"],
)
@with_comms
def test_raises_mesh_shape_mesh_dim_names_mismatch(self):
with self.assertRaisesRegex(
RuntimeError,
"mesh_shape and mesh_dim_names should have same length!",
):
mesh = init_device_mesh(
self.device_type,
(8,),
mesh_dim_names=["dp", "tp"],
)
class TestDeviceMeshGetItem(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_raises_no_mesh_dim_found(self):
with self.assertRaisesRegex(
RuntimeError, "Cannot slice a DeviceMesh without mesh_dim_names!"
):
mesh = init_device_mesh(self.device_type, (2, 4))
child_mesh = mesh["DP"]
@with_comms
def test_raises_invalid_mesh_dim_name(self):
child_mesh_dim_name = ("PP",)
with self.assertRaisesRegex(KeyError, "Invalid mesh_dim_name"):
mesh_dim_names = ("DP", "TP")
mesh = init_device_mesh(
self.device_type, (2, 4), mesh_dim_names=mesh_dim_names
)
child_mesh = mesh[child_mesh_dim_name]
@with_comms
def test_get_item_2d(self):
mesh_shape = (2, 4)
mesh_dim_names = ("DP", "TP")
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
pg_ranks_by_dim_name = {}
for mesh_dim_name in mesh_dim_names:
mesh_dim = mesh_dim_names.index(mesh_dim_name)
pg_ranks_by_dim_name[mesh_dim_name] = mesh_2d.mesh.swapdims(
-1, mesh_dim
).reshape(-1, mesh_2d.mesh.size(mesh_dim))
tp_mesh = mesh_2d["TP"]
tp_group_idx = self.rank // 4
self.assertEqual(tp_mesh.mesh, pg_ranks_by_dim_name["TP"][tp_group_idx])
dp_mesh = mesh_2d["DP"]
dp_group_idx = self.rank % 4
self.assertEqual(mesh_2d["DP"].mesh, pg_ranks_by_dim_name["DP"][dp_group_idx])
@with_comms
def test_get_item_1d(self):
mesh = init_device_mesh(self.device_type, (8,), mesh_dim_names=("dp",))
# Make sure slicing out 1D mesh from a 1D mesh works.
dp_mesh = mesh["dp"]
self.assertEqual(dp_mesh, mesh)
with self.assertRaisesRegex(KeyError, "Invalid mesh_dim_name"):
dp_mesh = mesh["dim0"]
@with_comms
def test_get_item_3d(self):
mesh_shape = (2, 2, 2)
mesh_dim_names = ("Replicate", "Shard", "TP")
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
tp_group = [[0, 1], [2, 3], [4, 5], [6, 7]]
tp_group_idx = int(self.rank / 2)
self.assertEqual(mesh_3d["TP"].mesh.tolist(), tp_group[tp_group_idx])
shard_group = [[0, 2], [1, 3], [4, 6], [5, 7]]
shard_group_idx = self.rank % 2 + self.rank // 4 * 2
self.assertEqual(mesh_3d["Shard"].mesh.tolist(), shard_group[shard_group_idx])
replicate_group = [[0, 4], [1, 5], [2, 6], [3, 7]]
replicate_group_idx = self.rank % 4
self.assertEqual(
mesh_3d["Replicate"].mesh.tolist(), replicate_group[replicate_group_idx]
)
# We support both UX for nD slicing.
# mesh_3d[["Replicate", "Shard"]] or mesh_3d["Replicate", "Shard"]
hsdp_mesh_1 = mesh_3d[["Replicate", "Shard"]]
hsdp_mesh_2 = mesh_3d["Replicate", "Shard"]
hsdp_group = [[[0, 2], [4, 6]], [[1, 3], [5, 7]]]
hsdp_group_idx = self.rank % 2
self.assertEqual(hsdp_mesh_1.mesh.tolist(), hsdp_group[hsdp_group_idx])
self.assertEqual(hsdp_mesh_2.mesh.tolist(), hsdp_group[hsdp_group_idx])
self.assertEqual(hsdp_mesh_1, hsdp_mesh_2)
@with_comms
def test_cache_and_reuse_submesh_slice_result(self):
mesh = init_device_mesh(self.device_type, (2, 4), mesh_dim_names=("dp", "tp"))
dp_mesh = mesh["dp"]
ref_pg_count = _world.group_count
# When we call the "dp" slice second time, it should not create any new pg.
# As we are just using the cached result so the pg count should be the same.
dp_mesh_2 = mesh["dp"]
self.assertEqual(ref_pg_count, _world.group_count)
# When we call the "tp" slice, it should not create a new pg, as the "tp" slice would
# just reuse the parent mesh pg.
tp_mesh = mesh["tp"]
self.assertEqual(_world.group_count, ref_pg_count)
@with_comms
def test_get_item_3d_noncontiguous_slicing(self):
mesh_shape = (2, 2, 2)
mesh_dim_names = ("dp", "pp", "cp")
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
# Slice order simply decides which mesh_dim sits on which mesh_dim.
# For dp_cp_mesh, cp mesh is the innermost dimension.
dp_cp_mesh = mesh_3d["dp", "cp"]
expected_mesh_tensor = (
torch.tensor([[0, 1], [4, 5]], dtype=torch.int)
if self.rank in (0, 1, 4, 5)
else torch.tensor([[2, 3], [6, 7]], dtype=torch.int)
)
dp_local_rank = dp_cp_mesh.get_local_rank("dp")
self.assertEqual(dp_cp_mesh.mesh, expected_mesh_tensor)
cp_mesh = mesh_3d["cp"]
# Check on the current dp_local_rank, whether the cp mesh tensor is the same.
self.assertEqual(dp_cp_mesh.mesh[dp_local_rank], cp_mesh.mesh)
with self.assertRaisesRegex(
KeyError,
"Invalid mesh_dim_names",
):
cp_dp_mesh = mesh_3d["cp", "dp"]
@with_comms
def test_flatten_mesh_3d(self):
mesh_shape = (2, 2, 2)
mesh_dim_names = ("dp", "cp", "tp")
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
# Test flatten contiguous dims
dp_cp_mesh = mesh_3d["dp", "cp"]
flattened_dp_cp_mesh = dp_cp_mesh._flatten()
self.assertEqual(dp_cp_mesh.mesh.flatten(), flattened_dp_cp_mesh.mesh)
self.assertEqual(flattened_dp_cp_mesh.mesh_dim_names[0], "dp_cp")
root_mesh = _mesh_resources.get_root_mesh(dp_cp_mesh)
self.assertEqual(root_mesh, mesh_3d)
flatten_mesh_root_dims = _mesh_resources.flatten_name_to_root_dims[root_mesh][
"dp_cp"
]
self.assertEqual(flatten_mesh_root_dims, (0, 1))
ref_pg_count = _world.group_count
# Calling flatten again should not create a new pg.
flattened_dp_cp_mesh_2 = dp_cp_mesh._flatten()
self.assertEqual(flattened_dp_cp_mesh, flattened_dp_cp_mesh_2)
self.assertEqual(ref_pg_count, _world.group_count)
# Test flatten non-contiguous dims
dp_tp_mesh = mesh_3d["dp", "tp"]
flattened_dp_tp_mesh = dp_tp_mesh._flatten()
self.assertEqual(dp_tp_mesh.mesh.flatten(), flattened_dp_tp_mesh.mesh)
self.assertEqual(flattened_dp_tp_mesh.mesh_dim_names[0], "dp_tp")
root_mesh = _mesh_resources.get_root_mesh(dp_tp_mesh)
self.assertEqual(root_mesh, mesh_3d)
flatten_mesh_root_dims = _mesh_resources.flatten_name_to_root_dims[root_mesh][
"dp_tp"
]
self.assertEqual(flatten_mesh_root_dims, (0, 2))
# Test flatten with a flattened mesh_dim_name
cp_tp_mesh = mesh_3d["cp", "tp"]
cp_tp_mesh._flatten("dummy")
self.assertEqual(mesh_3d["dummy"].mesh_dim_names[0], "dummy")
@with_comms(eager_init=True)
def test_flatten_mesh_4d(self):
mesh_shape = (2, 2, 2, 1)
mesh_dim_names = ("dp_replicate", "dp_shard", "cp", "tp")
mesh_4d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
# flatten HSDP and CP into one mesh
dp_cp_mesh = mesh_4d[mesh_dim_names[:3]]._flatten("dp_cp")
# check flattened mesh integrity
self.assertEqual(mesh_4d["dp_cp"].mesh.flatten(), dp_cp_mesh.mesh)
# check flattened mesh dim names is correct
self.assertEqual(dp_cp_mesh.mesh_dim_names, ("dp_cp",))
# check flattened mesh dependency
self.assertEqual(_mesh_resources.get_root_mesh(dp_cp_mesh), mesh_4d)
@with_comms
def test_reconstruct_mesh_with_flatten_dim(self):
mesh_3d = init_device_mesh(
self.device_type, (2, 2, 2), mesh_dim_names=("replicate", "shard", "cp")
)
shard_cp_mesh = mesh_3d["shard", "cp"]._flatten()
hsdp_mesh = mesh_3d["replicate", "shard_cp"]
expected_mesh_tensor = torch.tensor(
[[0, 1, 2, 3], [4, 5, 6, 7]], dtype=torch.int
)
self.assertEqual(hsdp_mesh.mesh, expected_mesh_tensor)
self.assertEqual(shard_cp_mesh.get_group(), mesh_3d["shard_cp"].get_group())
self.assertEqual(
shard_cp_mesh.get_group(), mesh_3d.get_group(mesh_dim="shard_cp")
)
mesh_3d = init_device_mesh(
self.device_type, (2, 2, 2), mesh_dim_names=("dp", "cp", "tp")
)
dp_cp_mesh = mesh_3d["dp", "cp"]._flatten()
spmd_mesh = mesh_3d["dp_cp", "tp"]
expected_mesh_tensor = torch.tensor(
[[0, 1], [2, 3], [4, 5], [6, 7]], dtype=torch.int
)
self.assertEqual(spmd_mesh.mesh, expected_mesh_tensor)
self.assertEqual(dp_cp_mesh.get_group(), mesh_3d["dp_cp"].get_group())
self.assertEqual(dp_cp_mesh.get_group(), mesh_3d.get_group(mesh_dim="dp_cp"))
class TestMeshEnv(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_get_root_mesh(self):
mesh_3d = init_device_mesh(
self.device_type, (2, 2, 2), mesh_dim_names=("dp", "cp", "tp")
)
dp_cp_mesh = mesh_3d["dp", "cp"]
dp_tp_mesh = mesh_3d["dp", "tp"]
cp_tp_mesh = mesh_3d["cp", "tp"]
dp_mesh = mesh_3d["dp"]
cp_mesh = mesh_3d["cp"]
tp_mesh = mesh_3d["tp"]
self.assertEqual(_mesh_resources.get_root_mesh(dp_cp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(dp_tp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(cp_tp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(dp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(cp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(tp_mesh), mesh_3d)
@with_comms
def test_get_root_mesh_dim_exist(self):
mesh_shape = (2, self.world_size // 2)
mesh_dim_names = ("DP", "TP")
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
self.assertEqual(_mesh_resources.get_root_mesh_dim(mesh_2d["DP"]), 0)
self.assertEqual(_mesh_resources.get_root_mesh_dim(mesh_2d["TP"]), 1)
@with_comms
def test_get_root_mesh_dim_not_exist(self):
mesh_shape = (self.world_size,)
mesh = init_device_mesh(self.device_type, mesh_shape)
self.assertEqual(_mesh_resources.get_root_mesh_dim(mesh), None)
@with_comms
def test_get_mesh_dim_by_name(self):
mesh_shape = (2, self.world_size // 2)
mesh_dim_names = ("DP", "TP")
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
self.assertEqual(_mesh_resources.get_mesh_dim_by_name(mesh_2d, "DP"), 0)
self.assertEqual(_mesh_resources.get_mesh_dim_by_name(mesh_2d, "TP"), 1)
@with_comms
def test_get_all_submeshes(self):
mesh_2d = init_device_mesh(
self.device_type, (2, 4), mesh_dim_names=("replicate", "shard")
)
all_submeshes = _mesh_resources._get_all_submeshes(mesh_2d, "replicate")
self.assertEqual(len(all_submeshes), 4)
self.assertEqual(
all(submesh.mesh.numel() == 2 for submesh in all_submeshes), True
)
@with_comms
def test_mesh_slice_fake_tensor_mode(self):
mesh_shape = (2, self.world_size // 2)
mesh_dim_names = ("DP", "TP")
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
with FakeTensorMode():
dp_mesh = mesh_2d["DP"]
tp_mesh = mesh_2d["TP"]
dp_tp_mesh = mesh_2d["DP", "TP"]
class DeviceMeshCollectiveTest(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_broadcast_1d(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
mesh_broadcast(local_tensor, mesh, mesh_dim=0)
self.assertEqual(local_tensor, torch.zeros(3, 3))
@with_comms
def test_scatter_1d(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
scatter_tensor_shape = [3, 3, 3]
for scatter_dim in range(len(scatter_tensor_shape)):
shard_placement = Shard(scatter_dim)
scatter_tensor_shape[scatter_dim] *= self.world_size
# make the random seed same across rank
torch.manual_seed(0)
global_tensor = torch.randn(scatter_tensor_shape, device=self.device_type)
splitted_list, _ = shard_placement._split_tensor(
global_tensor, mesh.size(), with_padding=True, contiguous=True
)
recv_tensor = torch.empty_like(splitted_list[mesh.get_rank()])
# scatter on dim > 0 would generate non-contiguous tensor, verify that works
mesh_scatter(recv_tensor, splitted_list, mesh, mesh_dim=0)
self.assertEqual(recv_tensor, splitted_list[mesh.get_rank()])
@with_comms
def test_scatter_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = torch.randn(
device_mesh.size() + 3, device_mesh.size() + 1, device=self.device_type
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_to_scatter = tensor_to_split.clone()
tensor_splitted_list = list(
torch.chunk(tensor_to_split, self.world_size, dim=shard_dim)
)
for _ in range(self.world_size - len(tensor_splitted_list)):
tensor_splitted_list.append(torch.tensor([], device=self.device_type))
padded_tensor_list, pad_sizes = shard_placement._split_tensor(
tensor_to_scatter,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
scattered_tensor = torch.empty_like(padded_tensor_list[my_rank])
mesh_scatter(scattered_tensor, padded_tensor_list, device_mesh, mesh_dim=0)
if pad_sizes[my_rank] != 0:
scattered_tensor = unpad_tensor(
scattered_tensor, shard_dim, pad_sizes[my_rank]
)
if scattered_tensor.numel() == 0:
# We need to check numel() instead of size if a tensor is ([]) after unpadding,
# since the size could be ([0, 8]) after unpadding.
self.assertEqual(
scattered_tensor.numel(), tensor_splitted_list[my_rank].numel()
)
else:
self.assertEqual(
scattered_tensor.size(), tensor_splitted_list[my_rank].size()
)
self.assertEqual(scattered_tensor, tensor_splitted_list[my_rank])
@with_comms
def test_all_gather_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = torch.ones(
device_mesh.size() + 3,
device_mesh.size() + 1,
device=self.device_type,
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_padded_list, pad_sizes = shard_placement._split_tensor(
tensor_to_split,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
local_tensor = tensor_padded_list[my_rank]
big_tensor = funcol.all_gather_tensor(
local_tensor, gather_dim=shard_dim, group=(device_mesh, 0)
)
big_tensor_chunks = list(
torch.chunk(big_tensor, device_mesh.size(), dim=shard_dim)
)
unpadded_list = [
(
unpad_tensor(big_tensor, shard_dim, pad_sizes[i])
if pad_sizes[i] > 0
else big_tensor
)
for i, big_tensor in enumerate(big_tensor_chunks)
]
all_gathered_tensor = torch.cat(unpadded_list, dim=shard_dim)
self.assertEqual(all_gathered_tensor.size(), tensor_to_split.size())
self.assertEqual(all_gathered_tensor, tensor_to_split)
@with_comms
def test_reduce_scatter_contiguous(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
# Init the tensor
step = self.world_size * 2
total_elem = step**2
tensor = torch.arange(0, total_elem).view(step, -1).to(device=self.device_type)
tensor = tensor * (my_rank + 1)
# Get non-contiguous tensor by slicing
tensor_to_reduce = tensor[::2, :2]
tensor_contiguous = tensor_to_reduce.clone().contiguous()
# Partial to Shard to trigger reduce_scatter
tensor_to_reduce = DTensor.from_local(
tensor_to_reduce, device_mesh, [_Partial()]
)
tensor_contiguous = DTensor.from_local(
tensor_contiguous, device_mesh, [_Partial()]
)
new_tensor = tensor_to_reduce.redistribute(device_mesh, [Shard(0)])
new_tensor_contiguous = tensor_contiguous.redistribute(device_mesh, [Shard(0)])
# The output for contiguous and non-contiguous tensors of the same value
# should return the same reducescatter value.
new_tensor_local = new_tensor._local_tensor
new_tensor_contiguous_local = new_tensor_contiguous._local_tensor
self.assertEqual(new_tensor_local, new_tensor_contiguous_local)
self.assertEqual(list(new_tensor_local.size()), [1, 2])
# Check the reduce numerical value
sum_base = (1 + self.world_size) * self.world_size / 2
first_elem = my_rank * sum_base * step * 2
expected_tensor = torch.tensor(
[[first_elem, first_elem + sum_base]],
dtype=new_tensor_local.dtype,
device=self.device_type,
)
self.assertEqual(new_tensor_local, expected_tensor)
@with_comms
def test_reduce_scatter_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = (
torch.ones(
device_mesh.size() + 3,
device_mesh.size() + 1,
device=self.device_type,
)
* self.rank
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_to_scatter = tensor_to_split.clone()
tensor_splitted_list = list(
torch.chunk(tensor_to_split, self.world_size, dim=shard_dim)
)
for _ in range(self.world_size - len(tensor_splitted_list)):
tensor_splitted_list.append(torch.tensor([], device=self.device_type))
padded_tensor_list, pad_sizes = shard_placement._split_tensor(
tensor_to_scatter,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
tensor_to_reduce = torch.cat(padded_tensor_list, shard_dim)
res_num = ((0 + self.world_size - 1) * self.world_size) / 2
scattered_tensor = funcol.reduce_scatter_tensor(
tensor_to_reduce,
reduceOp="sum",
scatter_dim=shard_dim,
group=(device_mesh, 0),
)
# unpad scattered_tensor
if pad_sizes[my_rank] > 0:
scattered_tensor = unpad_tensor(
scattered_tensor, shard_dim, pad_sizes[my_rank]
)
if scattered_tensor.numel() == 0:
# We need to check numel() instead of size if a tensor is ([]) after unpadding,
# since the size could be ([0, 8]) after unpadding.
self.assertEqual(
scattered_tensor.numel(), tensor_splitted_list[my_rank].numel()
)
else:
self.assertEqual(
scattered_tensor.size(), tensor_splitted_list[my_rank].size()
)
self.assertEqual(
scattered_tensor,
torch.ones_like(tensor_splitted_list[my_rank]) * res_num,
)
@with_comms
def test_broadcast_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
cloned_local_tensor = local_tensor.clone()
mesh_broadcast(cloned_local_tensor, mesh, mesh_dim=dim)
res_num = global_ranks[0]
self.assertEqual(cloned_local_tensor, torch.ones(3, 3) * res_num)
@with_comms
def test_scatter_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
scattered_tensors = [
torch.ones(3, 3, device=self.device_type) * global_rank
for global_rank in global_ranks
]
received_tensor = torch.empty_like(
scattered_tensors[mesh.get_coordinate()[dim]]
)
mesh_scatter(received_tensor, scattered_tensors, mesh, mesh_dim=dim)
self.assertEqual(received_tensor, torch.ones(3, 3) * self.rank)
if __name__ == "__main__":
run_tests()
|