1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
# Owner(s): ["oncall: distributed"]
import sys
import unittest
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, init_device_mesh, Shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
HAS_CUDA = torch.cuda.is_available()
class TestFakePG(TestCase):
def tearDown(self):
super().tearDown()
dist.destroy_process_group()
def test_all_reduce(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=1, world_size=2, store=store)
output = torch.ones(3, 3) * dist.get_rank()
dist.all_reduce(output)
self.assertEqual(tuple(output.shape), (3, 3))
def test_allgather(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=1, world_size=2, store=store)
input_tensor = torch.ones(3, 3) * dist.get_rank()
output_tensors = [torch.empty_like(input_tensor) for _ in range(2)]
dist.all_gather(output_tensors, input_tensor)
for _, out_tensor in enumerate(output_tensors):
self.assertEqual(tuple(out_tensor.shape), (3, 3))
def test_reduce_scatter(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=1, world_size=2, store=store)
to_reduce_scatter = [torch.ones(3, 3) * rank for rank in range(2)]
output_tensor = torch.empty(3, 3)
dist.reduce_scatter(output_tensor, to_reduce_scatter)
self.assertEqual(tuple(output_tensor.shape), (3, 3))
@unittest.skipIf(not HAS_CUDA, "No CUDA")
def test_construct_fsdp(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
FSDP(nn.Linear(2, 3, device="cuda"))
@unittest.skipIf(not HAS_CUDA, "No CUDA")
def test_fsdp_fake_e2e(self):
store = dist.HashStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
my_module = nn.Sequential(
nn.Linear(2, 3, device="cuda"),
nn.ReLU(),
nn.Linear(3, 2, device="cuda"),
)
sharded_module = FSDP(my_module, use_orig_params=True)
optim = torch.optim.Adam(sharded_module.parameters(), lr=0.0001)
input = torch.randn(2, 2)
x = sharded_module(input)
loss = x.sum()
loss.backward()
optim.step()
@unittest.skipIf(not HAS_CUDA, "No CUDA")
def test_fake_pg_tracing(self):
store = dist.HashStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
default_pg = dist.distributed_c10d._get_default_group()
def allgather_fn(tensor):
return funcol.all_gather_tensor(tensor, 0, default_pg)
gm = make_fx(allgather_fn)(torch.randn(2, 2, device="cuda"))
FileCheck().check("all_gather").check("wait_tensor").run(str(gm.graph))
def test_broadcast(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
# src == rank
output = torch.ones(3, 3)
dist.broadcast(output, src=0)
self.assertEqual(tuple(output.shape), (3, 3))
# src != rank
output = torch.ones(3, 3)
dist.broadcast(output, src=1)
self.assertEqual(tuple(output.shape), (3, 3))
def test_scatter(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
# src == rank
output = torch.ones(3, 3)
to_scatter = [torch.ones(3, 3) * rank for rank in range(2)]
dist.scatter(output, to_scatter)
self.assertEqual(tuple(output.shape), (3, 3))
# src != rank
output = torch.ones(3, 3)
dist.scatter(output, None, src=1)
self.assertEqual(tuple(output.shape), (3, 3))
def test_alltoall(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
output_list = [torch.ones(3, 3) for _ in range(2)]
input_list = [torch.ones(3, 3) for _ in range(2)]
dist.all_to_all(output_list, input_list)
self.assertEqual(len(output_list), 2)
for output in output_list:
self.assertEqual(tuple(output.shape), (3, 3))
def test_alltoall_base(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
out_tensor = torch.ones(3, 3)
in_tensor = torch.ones(3, 3)
output_split = [1, 1]
input_split = [1, 1]
dist.all_to_all_single(out_tensor, in_tensor, output_split, input_split)
self.assertEqual(tuple(out_tensor.shape), (3, 3))
def test_send(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
tensor = torch.ones(3, 3)
dist.send(tensor, 1)
self.assertEqual(tuple(tensor.shape), (3, 3))
def test_recv(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
output = torch.ones(3, 3)
dist.recv(output, 1)
self.assertEqual(tuple(output.shape), (3, 3))
@unittest.skipIf(not HAS_CUDA, "No CUDA or TP+FSDP")
def test_fsdp_tp_fake_e2e(self):
world_size = 4
tp_size = 2
store = dist.HashStore()
dist.init_process_group(
backend="fake", rank=0, world_size=world_size, store=store
)
device_mesh = DeviceMesh("cuda", torch.arange(0, world_size).view(-1, tp_size))
device_mesh = init_device_mesh(
"cuda", (world_size // tp_size, tp_size), mesh_dim_names=["dp", "tp"]
)
sequence_parallelize_plan = {
"net1": ColwiseParallel(input_layouts=Shard(0)),
"net2": RowwiseParallel(output_layouts=Shard(0)),
}
pairwise_parallelize_plan = {
"net1": ColwiseParallel(),
"net2": RowwiseParallel(),
}
for parallel_plan in [sequence_parallelize_plan, pairwise_parallelize_plan]:
my_module = parallelize_module(
MLPModule(device="cuda"),
device_mesh["tp"],
parallel_plan,
)
sharded_module = FSDP(
my_module, use_orig_params=True, device_mesh=device_mesh["dp"]
)
optim = torch.optim.Adam(sharded_module.parameters(), lr=0.0001)
for i in range(10):
dp_rank = dist.get_rank()
torch.manual_seed(i + dp_rank)
input = torch.randn(20, 10).cuda(dist.get_rank())
x = sharded_module(input)
loss = x.sum()
loss.backward()
optim.step()
if __name__ == "__main__":
run_tests()
|