1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
|
# Owner(s): ["module: dynamo"]
import datetime
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
# for some reason importing functional collectives after dynamo breaks collectives handling!
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.testing import CompileCounter
from torch._dynamo.utils import same
from torch._inductor.compile_fx import compile_fx as inductor_compile_fx
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed.distributed_c10d import GroupMember
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
requires_cuda,
skipIfRocm,
)
from torch.testing._internal.inductor_utils import HAS_GPU
def _tolist_with_constrain_as_size(tensor):
lst = tensor.tolist()
for elem in lst:
torch._check_is_size(elem)
return lst
@requires_nccl()
class TestCollectivesMultiProc(DynamoDistributedMultiProcTestCase):
"""
Run correctness checks in multi-proc runner, mark with minimum # GPUs to run under
"""
def get_world_trs(self):
return {
"tag": "",
"ranks": list(range(self.world_size)),
"group_size": self.world_size,
}
@property
def world_size(self) -> int:
# hack: no matter whether we have 2 or 3 or 4 gpus, just run on 2
# works around issue with skipif<2 and workers with unpredictable #s gpu
return 2
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_broadcast_inductor(self):
"""
Testing if broadcast works correctly when using inductor
"""
def example(tensor, src, *, tag, ranks, group_size):
res = torch.ops.c10d_functional.broadcast(
tensor, src, tag, ranks, group_size
)
res = torch.ops.c10d_functional.wait_tensor(res)
return res
def compile(func, example_inputs):
graph = make_fx(func)(*example_inputs)
return inductor_compile_fx(graph, example_inputs)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
example = functools.partial(
example,
**self.get_world_trs(),
)
t = torch.randn(4, 4, device="cuda")
inputs = (t if self.rank == 0 else torch.zeros(4, 4, device="cuda"), 0)
eager_out = example(*inputs)
self.assertTrue(same(t, eager_out))
compiled_func = compile(example, inputs)
compiled_out = compiled_func(*inputs)
self.assertTrue(same(eager_out, compiled_out))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_allreduce_inductor(self):
"""
This is matmul/cat/allreduce is a pattern we aim to optimize.
"""
def matmul_cat_col(a, b, c, d, e, f, *, tag, ranks, group_size):
x = torch.matmul(a, b)
y = torch.matmul(c, d)
z = torch.cat((x, y))
ar = torch.ops.c10d_functional.all_reduce(z, "sum", tag, ranks, group_size)
g = torch.matmul(e, f)
ar = torch.ops.c10d_functional.wait_tensor(ar)
out = torch.add(ar, g.repeat(2, 1))
return (out,)
def compile(func, example_inputs):
graph = make_fx(func)(*example_inputs)
return inductor_compile_fx(graph, example_inputs)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
matmul_cat_col = functools.partial(
matmul_cat_col,
**self.get_world_trs(),
)
inputs = (torch.ones(4, 4, device="cuda") + self.rank,) * 6
eager_out = matmul_cat_col(*inputs)
compiled_matmul_cat_col = compile(matmul_cat_col, inputs)
inductor_out = compiled_matmul_cat_col(*inputs)
self.assertTrue(same(eager_out, inductor_out, tol=0.001))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_allreduce_inductor_cudagraph_trees(self):
"""
Tests whether cudagraph trees support all_reduce from nccl
"""
import torch.distributed as dist
# dist.all_reduce is an inplace op in eager mode but a functionanlized op in compiled mode.
# so we define eager_func and func separately for the same semantic.
def eager_func(x):
y = x * x
dist.all_reduce(y, op=dist.ReduceOp.SUM)
x = torch.nn.functional.silu(x)
return x * y
def func(x):
y = x * x
y = dist.all_reduce(y, op=dist.ReduceOp.SUM)
x = torch.nn.functional.silu(x)
return x * y
options = {
"triton.cudagraphs": True,
"triton.cudagraph_trees": True,
}
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
compiled_func = torch.compile(
func, backend="inductor", fullgraph=True, options=options, dynamic=None
)
for nelem in [1024, 2048, 4096]:
# CI (Tesla T4) does not support bfloat16 compilation natively,
# using float
x = torch.randn(nelem, device="cuda", dtype=torch.float)
golden_out = eager_func(x)
for _ in range(3):
compiled_out = compiled_func(x)
self.assertEqual(golden_out, compiled_out)
def test_c10d_functional_tagged_pt2_compliant(self):
op = torch.ops._c10d_functional.all_reduce.default
self.assertIn(torch.Tag.pt2_compliant_tag, op.tags)
op = torch.ops.c10d_functional.all_reduce.default
self.assertIn(torch.Tag.pt2_compliant_tag, op.tags)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_eager_allreduce_inductor_wait(self):
def eager_func(a, b, c, d, *, tag, ranks, group_size):
x = torch.matmul(a, b)
y = torch.matmul(c, d)
z = torch.cat((x, y))
ar = torch.ops.c10d_functional.all_reduce(z, "sum", tag, ranks, group_size)
return ar
def inductor_func(ar, e, f):
g = torch.matmul(e, f)
ar = torch.ops.c10d_functional.wait_tensor(ar)
out = torch.add(ar, g.repeat(2, 1))
return (out,)
def compile(func, example_inputs):
graph = make_fx(func)(*example_inputs)
return inductor_compile_fx(graph, example_inputs)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
eager_func = functools.partial(
eager_func,
**self.get_world_trs(),
)
eager_inputs = (torch.ones(4, 4, device="cuda") + self.rank,) * 4
inductor_inputs = (torch.ones(4, 4, device="cuda") + self.rank,) * 2
eager_out = inductor_func(eager_func(*eager_inputs), *inductor_inputs)
compiled_inductor_func = compile(
inductor_func, [eager_func(*eager_inputs)] + list(inductor_inputs)
)
inductor_out = compiled_inductor_func(
eager_func(*eager_inputs), *inductor_inputs
)
print(f"eager_out, {eager_out}")
print(f"inductor_out, {inductor_out}")
self.assertTrue(same(eager_out, inductor_out, tol=0.001))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_inductor_allreduce_eager_wait(self):
def inductor_func(a, b, c, d, *, tag, ranks, group_size):
x = torch.matmul(a, b)
y = torch.matmul(c, d)
z = torch.cat((x, y))
ar = torch.ops.c10d_functional.all_reduce(z, "sum", tag, ranks, group_size)
return ar
def eager_func(ar, e, f):
g = torch.matmul(e, f)
ar = torch.ops.c10d_functional.wait_tensor(ar)
out = torch.add(ar, g.repeat(2, 1))
return (out,)
def compile(func, example_inputs):
graph = make_fx(func)(*example_inputs)
return inductor_compile_fx(graph, example_inputs)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
inductor_func = functools.partial(
inductor_func,
**self.get_world_trs(),
)
inductor_inputs = (torch.ones(4, 4, device="cuda") + self.rank,) * 4
eager_inputs = (torch.ones(4, 4, device="cuda") + self.rank,) * 2
eager_out = eager_func(inductor_func(*inductor_inputs), *eager_inputs)
compiled_inductor_func = compile(inductor_func, inductor_inputs)
inductor_out = eager_func(
compiled_inductor_func(*inductor_inputs), *eager_inputs
)
self.assertTrue(same(eager_out, inductor_out, tol=0.001))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
@skipIfRocm
def test_eager_async_allreduce_inductor_wait(self):
import torch.distributed as dist
from torch._inductor.utils import run_and_get_code
def all_reduce_non_functional_eager(x):
y = x * x
work = dist.all_reduce(y, op=dist.ReduceOp.SUM, async_op=True)
assert isinstance(work, torch.distributed.Work)
return work, y
def all_reduce_wait(work, y): # potentially compiled
if torch.compiler.is_dynamo_compiling():
torch.ops.c10d_functional.wait_tensor(y)
else:
work.wait(datetime.timedelta(seconds=10))
# Under compile, if `wait_tensor(y)` above is correctly executed,
# `y`'s data is in its final form and the output of this function will match eager;
# otherwise, `y * y` will run in parallel with `all_reduce(y)` and the output of this function
# will not match eager.
return y * y
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
x = torch.ones(12800, 12800, device="cuda") + self.rank
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
# NOTE: We run for 10 iterations each, to ensure that the GPU execution is way behind CPU
# and that `y * y` on CPU side will be issued before `all_reduce(y)` on GPU side is done,
# thus guaranteeing that in the bad case `y * y` on GPU side will run in parallel with `all_reduce(y)`
# thus will produce the wrong result that fails the unit test.
def _run_loop_collective_wait(x, wait_fn, expected_registry_size):
for _ in range(10):
self.assertEqual(
torch._C._distributed_c10d._get_work_registry_size(), 0
)
work, y = all_reduce_non_functional_eager(x)
self.assertEqual(
torch._C._distributed_c10d._get_work_registry_size(),
expected_registry_size,
)
out = wait_fn(work, y)
self.assertEqual(
torch._C._distributed_c10d._get_work_registry_size(), 0
)
return work, y, out
# Test: Pure-eager
all_reduce_wait_eager = all_reduce_wait
work, y, out_ref = _run_loop_collective_wait(
x,
wait_fn=all_reduce_wait_eager,
expected_registry_size=0,
)
all_reduce_wait_compiled = torch.compile(
all_reduce_wait,
backend="inductor",
fullgraph=True,
)
# Test: Issue comm in eager -> wait for comm in compile. Use the context manager.
with _functional_collectives.allow_inflight_collective_as_graph_input_ctx():
work, y, out_compiled = _run_loop_collective_wait(
x, wait_fn=all_reduce_wait_compiled, expected_registry_size=1
)
self.assertEqual(out_ref, out_compiled)
# Check that `wait_tensor()` is in the Inductor generated code
_, triton_codes = run_and_get_code(all_reduce_wait_compiled, work, y)
FileCheck().check("torch.ops._c10d_functional.wait_tensor.default(").run(
triton_codes[0]
)
# Failure Case: Issue comm in eager -> wait for comm in compile. Doesn't use the context manager.
_, _, out_compiled = _run_loop_collective_wait(
x, wait_fn=all_reduce_wait_compiled, expected_registry_size=0
)
# In this case `.wait_tensor(y)` in compiled region will not be able to find the corresponding work object
# to invoke the wait, thus the result will not match eager.
self.assertNotEqual(out_ref, out_compiled)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
@patch.object(torch._inductor.config, "allow_buffer_reuse", True)
def test_allreduce_input_buffer_reuse(self):
def func(a, *, tag, ranks, group_size):
ar = _functional_collectives.all_reduce(a, "sum", ranks, tag)
c = torch.relu(a)
d = torch.matmul(c, c)
e = d + ar
return (e,)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
inputs = torch.ones(4, 4, device="cuda") + self.rank
compiled = torch.compile(func)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
self.assertTrue(same(out, correct))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_permute_tensor(self):
def func(tensor, src_dst_pairs, *, tag, ranks, group_size):
return _functional_collectives.permute_tensor(
tensor, src_dst_pairs, ranks, tag
)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
inputs = (
# rank0: [0., 1.], rank1: [2., 3.]
torch.arange(2, dtype=torch.float32, device="cuda") + 2 * self.rank,
[1, 0],
)
compiled = torch.compile(func)
out = compiled(*inputs, **self.get_world_trs())
correct = func(*inputs, **self.get_world_trs())
self.assertTrue(same(out, correct))
# rank0: [2., 3.], rank1: [0., 1.]
expected = torch.arange(2, dtype=torch.float32, device="cuda") + 2 * (
(self.rank - 1 + self.world_size) % self.world_size
)
self.assertEqual(out, expected)
self.assertEqual(correct, expected)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
@patch.object(torch._inductor.config, "allow_buffer_reuse", True)
def test_allgather_output_buffer_reuse(self):
class Model(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.emb = torch.nn.Embedding(4, 4)
def forward(self, x, world_size, tag, ranks, group_size):
y = self.emb(x)
last_dim = y.dim() - 1
res = _functional_collectives.all_gather_tensor(y, 0, ranks, tag)
out = torch.cat(torch.chunk(res, world_size, dim=0), dim=last_dim)
return out
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
model = Model().cuda()
model_compiled = torch.compile(model)
inp = torch.tensor([[2, 1, 3, 0]], dtype=torch.long, device="cuda")
out = model_compiled(inp, self.world_size, **self.get_world_trs())
correct = model(inp, self.world_size, **self.get_world_trs())
self.assertTrue(same(out, correct))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_allgather_contiguous_input(self):
class Model(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.emb = torch.nn.Embedding(4, 4)
def forward(self, x, world_size, tag, ranks, group_size):
y = self.emb(x)
last_dim = y.dim() - 1
y = y.transpose_(0, last_dim).contiguous()
res = _functional_collectives.all_gather_tensor(y, 0, ranks, tag)
out = y.transpose_(0, last_dim).contiguous()
return out
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
model = Model().cuda()
model_compiled = torch.compile(model)
inp = torch.tensor([[2, 1, 3, 0]], dtype=torch.long, device="cuda")
out = model_compiled(inp, self.world_size, **self.get_world_trs())
correct = model(inp, self.world_size, **self.get_world_trs())
self.assertTrue(same(out, correct))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_allgather_into_tensor_inductor(self):
"""
This is matmul/cat/allreduce is a pattern we aim to optimize.
"""
def example(a, b, *, tag, ranks, group_size):
c = torch.matmul(a, b)
ag = torch.ops.c10d_functional.all_gather_into_tensor(
c, tag, ranks, group_size
)
ag = torch.ops.c10d_functional.wait_tensor(ag)
return (ag,)
def compile(func, example_inputs):
graph = make_fx(func)(*example_inputs)
return inductor_compile_fx(graph, example_inputs)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
example = functools.partial(
example,
**self.get_world_trs(),
)
inputs = (torch.ones(4, 4, device="cuda") + self.rank,) * 2
eager_out = example(*inputs)
compiled_matmul_cat_col = compile(example, inputs)
inductor_out = compiled_matmul_cat_col(*inputs)
self.assertTrue(same(eager_out, inductor_out, tol=0.001))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_reduce_scatter_tensor_inductor(self):
def example(a, b, *, tag, ranks, group_size):
c = torch.matmul(a, b)
ag = torch.ops.c10d_functional.reduce_scatter_tensor(
c, "sum", tag, ranks, group_size
)
ag = torch.ops.c10d_functional.wait_tensor(ag)
return (ag,)
def compile(func, example_inputs):
graph = make_fx(func)(*example_inputs)
return inductor_compile_fx(graph, example_inputs)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
example = functools.partial(
example,
**self.get_world_trs(),
)
inputs = (torch.ones(4, 4, device="cuda") + self.rank,) * 2
eager_out = example(*inputs)
compiled_fn = compile(example, inputs)
inductor_out = compiled_fn(*inputs)
self.assertTrue(same(eager_out, inductor_out, tol=0.001))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
@patch.object(torch._dynamo.config, "capture_scalar_outputs", True)
def test_all_to_all_single_inductor(self):
def example(
inp,
input_split_sizes_tensor,
output_split_sizes_tensor,
*,
tag,
ranks,
group_size,
):
input_split_sizes = _tolist_with_constrain_as_size(input_split_sizes_tensor)
output_split_sizes = _tolist_with_constrain_as_size(
output_split_sizes_tensor
)
a2a = torch.ops.c10d_functional.all_to_all_single(
inp,
output_split_sizes,
input_split_sizes,
tag,
ranks,
group_size,
)
a2a = torch.ops.c10d_functional.wait_tensor(a2a)
out = a2a / a2a.sum(dim=0)
return out
with _dynamo_dist_per_rank_init(
self.rank, self.world_size
), torch._dynamo.config.patch(
dynamic_shapes=True,
capture_dynamic_output_shape_ops=True,
capture_scalar_outputs=True,
):
row = self.world_size * (self.rank + 1) * (self.world_size + 1) / 2
input_split_sizes_tensor = torch.tensor(
[(i + 1) * (self.rank + 1) for i in range(self.world_size)],
dtype=torch.int64,
)
output_split_sizes_tensor = torch.tensor(
[(i + 1) * (self.rank + 1) for i in range(self.world_size)],
dtype=torch.int64,
)
inputs = (
torch.ones(int(row), 5, device="cuda") * (self.rank + 1),
input_split_sizes_tensor,
output_split_sizes_tensor,
)
trs = self.get_world_trs()
compiled_fn = torch.compile(example, fullgraph=True, dynamic=True)
code = run_and_get_triton_code(compiled_fn, *inputs, **trs)
(
FileCheck()
.check_regex(
"torch.ops._c10d_functional.all_to_all_single.default\\("
"arg\\d+_\\d+, "
"\\[u\\d+, u\\d+\\], "
"\\[u\\d+, u\\d+\\]"
)
.run(code)
)
eager_out = example(*inputs, **trs)
inductor_out = compiled_fn(*inputs, **trs)
self.assertTrue(same(eager_out, inductor_out, tol=0.001))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_all_to_all_single_inductor_split_sizes_none(self):
def example(inp, *, tag, ranks, group_size):
a2a = torch.ops.c10d_functional.all_to_all_single(
inp,
None,
None,
tag,
ranks,
group_size,
)
a2a = torch.ops.c10d_functional.wait_tensor(a2a)
out = a2a / a2a.sum(dim=0)
return out
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
inputs = (
torch.ones(self.world_size, self.world_size, device="cuda")
* (self.rank + 1),
)
trs = self.get_world_trs()
compiled_fn = torch.compile(example, fullgraph=True, dynamic=True)
code = run_and_get_triton_code(compiled_fn, *inputs, **trs)
(
FileCheck()
.check_regex(
"torch.ops._c10d_functional.all_to_all_single.default\\("
"arg\\d+_\\d+, "
"\\[s\\d+ // \\d, s\\d+ // \\d\\], "
"\\[s\\d+ // \\d, s\\d+ // \\d\\]"
)
.run(code)
)
eager_out = example(*inputs, **trs)
inductor_out = compiled_fn(*inputs, **trs)
self.assertTrue(same(eager_out, inductor_out, tol=0.001))
@instantiate_parametrized_tests
@requires_nccl()
@requires_cuda
class TestCollectivesInductor(DynamoDistributedSingleProcTestCase):
"""
Prefer single-proc test runner for basic tests as it is easier to work with.
"""
def get_world_trs(self, world_size=1):
return {
"tag": "",
"ranks": list(range(world_size)),
"group_size": world_size,
}
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@torch._inductor.config.patch(debug=True)
def test_inductor_single_op(self):
def func(inp, *, tag, ranks, group_size):
ar = torch.ops.c10d_functional.all_reduce(
inp, "sum", tag, ranks, group_size
)
ar = torch.ops.c10d_functional.wait_tensor(ar)
return ar
inputs = torch.ones(4, 4, device="cuda")
compiled = torch.compile(func)
out = compiled(inputs, **self.get_world_trs())
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
# NOTE: Make sure we are not unneccessarily copying the outputs of
# wait_tensors before they are returned from the graph.
(
FileCheck()
.check("buf0 = empty_strided")
.check(".run(arg0_1, buf0, 16")
.check("torch.ops._c10d_functional.all_reduce_.default(buf0")
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
.check("return (buf0")
.run(code)
)
correct = func(inputs, **self.get_world_trs())
self.assertTrue(same(out, correct))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@torch._inductor.config.patch(debug=True)
def test_inductor_steal_buffer(self):
"""
it's ok and optimal if inductor allreduce mutates the buffer of an intermediate
that isn't going to be used again
"""
def func(inp, *, tag, ranks, group_size):
x = inp + 1
ar = torch.ops.c10d_functional.all_reduce(x, "sum", tag, ranks, group_size)
ar = torch.ops.c10d_functional.wait_tensor(ar)
# ensure other is not incorrectly aliasing ar's buffer
other = torch.ones_like(inp) + 22
return ar, other
inputs = torch.ones(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
(
FileCheck()
.check("buf0 = empty_strided")
.check(".run(arg0_1, buf0")
.check("torch.ops._c10d_functional.all_reduce_.default(buf0")
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
.check("buf5 = empty_strided")
.check(".run(buf5, 16")
.check("return (buf0, buf5")
.run(code)
)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
self.assertTrue(same(out, correct))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@torch._inductor.config.patch({"debug": True, "triton.descriptive_names": False})
def test_inductor_doesnt_mutate_shared(self):
"""
make sure that an intermediate that's going to be reuse isn't mutated unless copied
"""
def func(inp, *, tag, ranks, group_size):
x = inp + 1
ar = torch.ops.c10d_functional.all_reduce(x, "sum", tag, ranks, group_size)
y = x + 2
ar = torch.ops.c10d_functional.wait_tensor(ar)
# ensure other is not incorrectly aliasing ar's buffer
other = torch.ones_like(inp) + 22
return ar, y, other
inputs = torch.ones(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
# NOTE: Make sure we are not unneccessarily copying the outputs of
# wait_tensors before they are returned from the graph.
(
FileCheck()
.check("buf0 = empty_strided")
.check("buf5 = empty_strided")
.check(".run(arg0_1, buf0, buf5, 16")
.check("torch.ops._c10d_functional.all_reduce_.default(buf0")
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
.check("buf6 = empty_strided")
.check(".run(buf6, 16")
.check("return (buf0, buf5, buf6")
.run(code)
)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
self.assertTrue(same(out, correct))
def test_dynamo_trace_allreduce(self):
def func(inp):
ar = _functional_collectives.all_reduce(inp, "sum", "0")
return ar
inputs = torch.ones(4, 4, device="cuda")
counter = CompileCounter()
compiled = torch.compile(func, backend=counter)
out = compiled(inputs)
correct = func(inputs)
self.assertEqual(counter.frame_count, 1)
# should test more precisely, but the 2 is supposed to be (all_reduce, wait)
self.assertEqual(counter.op_count, 2)
self.assertTrue(same(out, correct))
def test_dynamo_trace_all_gather_tensor(self):
def func(inp):
ar = _functional_collectives.all_gather_tensor(inp, 0, "0")
return ar
inputs = torch.ones(4, 4, device="cuda")
counter = CompileCounter()
compiled = torch.compile(func, backend=counter)
out = compiled(inputs)
correct = func(inputs)
self.assertEqual(counter.frame_count, 1)
# should test more precisely, but the 2 is supposed to be (all_gather, wait)
self.assertEqual(counter.op_count, 2)
self.assertTrue(same(out, correct))
def test_dynamo_trace_all_gather_tensor_pg(self):
def func(inp, *, pg):
ar = _functional_collectives.all_gather_tensor(inp, 0, pg)
return ar
inputs = torch.ones(4, 4, device=self.device)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
out = compiled(inputs, pg=GroupMember.WORLD)
correct = func(inputs, pg=GroupMember.WORLD)
self.assertEqual(counter.frame_count, 1)
# should test more precisely, but the 2 is supposed to be (all_gather, wait)
self.assertEqual(counter.op_count, 2)
self.assertTrue(same(out, correct))
def test_dynamo_rewrite_dist_all_gather(self):
def func(inp, out, *, pg):
torch.distributed.all_gather_into_tensor(
out,
inp,
pg,
)
local_size = [4, 4]
# single-proc test
global_size = local_size
inputs = torch.ones(local_size, device=self.device)
outputs = torch.empty(global_size, device=self.device)
correct_outputs = torch.empty(global_size, device=self.device)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
compiled(inputs, outputs, pg=GroupMember.WORLD)
func(inputs, correct_outputs, pg=GroupMember.WORLD)
assert counter.frame_count == 1
# should test more precisely, but the 3 is supposed to be (all_gather, wait, copy_)
assert counter.op_count == 3
assert same(outputs, correct_outputs)
def test_dynamo_rewrite_dist_all_gather_list(self):
def func(inp, out, *, pg):
torch.distributed.all_gather(
out,
inp,
pg,
)
local_size = [4, 4]
# single-proc test
global_size = local_size
inputs = torch.ones(local_size, device=self.device)
outputs = [torch.empty(global_size, device=self.device)]
correct_outputs = [torch.empty(global_size, device=self.device)]
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
compiled(inputs, outputs, pg=GroupMember.WORLD)
func(inputs, correct_outputs, pg=GroupMember.WORLD)
assert counter.frame_count == 1
assert same(outputs, correct_outputs)
def test_dynamo_rewrite_dist_all_gather_args_match(self):
# Duplicated most of the structure from test_dynamo_rewrite_dist_all_gather
# except uses kwargs to ensure rewrite has matching arg names
def func(inp, out, *, pg):
torch.distributed.all_gather_into_tensor(
output_tensor=out,
input_tensor=inp,
group=pg,
async_op=False,
)
local_size = [4, 4]
# single-proc test
global_size = local_size
inputs = torch.ones(local_size, device=self.device)
outputs = torch.empty(global_size, device=self.device)
correct_outputs = torch.empty(global_size, device=self.device)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
compiled(inputs, outputs, pg=GroupMember.WORLD)
func(inputs, correct_outputs, pg=GroupMember.WORLD)
assert counter.frame_count == 1
# should test more precisely, but the 3 is supposed to be (all_gather, wait, copy_)
assert counter.op_count == 3
assert same(outputs, correct_outputs)
def test_dynamo_rewrite_dist_reduce_scatter(self):
def func(inp, out, *, pg):
torch.distributed.reduce_scatter_tensor(
out,
inp,
group=pg,
)
local_size = [4, 4]
# single-proc test
global_size = local_size
inputs = torch.ones(local_size, device=self.device)
outputs = torch.empty(global_size, device=self.device)
correct_outputs = torch.empty(global_size, device=self.device)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
compiled(inputs, outputs, pg=GroupMember.WORLD)
func(inputs, correct_outputs, pg=GroupMember.WORLD)
assert counter.frame_count == 1
# should test more precisely, but the 3 is supposed to be (reduce_scatter, wait, copy_)
assert counter.op_count == 3
assert same(outputs, correct_outputs)
@parametrize(
"pg_mode",
[
"positional",
"positional_none",
"kwargs",
"kwargs_none",
"unspecified",
],
)
def test_dynamo_rewrite_dist_allreduce(self, pg_mode):
def func(tensor, *args, **kwargs):
torch.distributed.all_reduce(
tensor,
*args,
**kwargs,
)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
args = []
kwargs = {}
if pg_mode == "positional":
args.append(torch.distributed.ReduceOp.MAX)
args.append(GroupMember.WORLD)
elif pg_mode == "positional_none":
args.append(torch.distributed.ReduceOp.MAX)
args.append(None)
elif pg_mode == "kwargs":
kwargs["group"] = GroupMember.WORLD
elif pg_mode == "kwargs_none":
kwargs["group"] = None
else:
assert pg_mode == "unspecified"
inputs_compiled = torch.ones(2, device=self.device)
inputs_eager = torch.ones(2, device=self.device)
compiled(inputs_compiled, *args, **kwargs)
func(inputs_eager, *args, **kwargs)
assert counter.frame_count == 1
# should test more precisely, but the 3 is supposed to be (all_reduce, wait, copy_)
assert counter.op_count == 3
assert same(inputs_compiled, inputs_eager)
def test_dynamo_rewrite_dist_all_to_all_single(self):
def func(output, input, pg):
torch.distributed.all_to_all_single(output, input, group=pg)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
input_compiled = torch.ones(2, device=self.device)
input_eager = torch.ones(2, device=self.device)
output_compiled = torch.empty(2, device=self.device)
output_eager = torch.empty(2, device=self.device)
compiled(output_compiled, input_compiled, GroupMember.WORLD)
func(output_eager, input_eager, GroupMember.WORLD)
assert counter.frame_count == 1
assert same(output_compiled, output_eager)
@parametrize(
"reduce_op",
[
torch.distributed.ReduceOp.SUM,
torch.distributed.ReduceOp.AVG,
torch.distributed.ReduceOp.PRODUCT,
torch.distributed.ReduceOp.MIN,
torch.distributed.ReduceOp.MAX,
],
)
def test_dynamo_rewrite_dist_allreduce_reduce_op(self, reduce_op):
from torch.distributed._functional_collectives import REDUCE_OP_TO_STR
def verify_rewrite(gm, _):
ar_nodes = []
for node in gm.graph.nodes:
if node.target in [
torch.ops.c10d_functional.all_reduce,
torch.ops._c10d_functional.all_reduce,
]:
ar_nodes.append(node)
self.assertEqual(len(ar_nodes), 1)
reduce_op_str = ar_nodes[0].args[1]
self.assertEqual(REDUCE_OP_TO_STR[reduce_op], reduce_op_str)
return gm
compiled = torch.compile(
torch.distributed.all_reduce,
backend=verify_rewrite,
fullgraph=True,
)
inputs = (
torch.ones(2, device=self.device),
reduce_op,
GroupMember.WORLD,
)
compiled(*inputs)
@parametrize(
"source",
[
"GroupMember.WORLD",
"group.WORLD",
"_get_default_group",
],
)
def test_dynamo_get_world_group(self, source):
def func(tensor):
if source == "GroupMember.WORLD":
group = torch.distributed.GroupMember.WORLD
elif source == "group.WORLD":
group = torch.distributed.group.WORLD
else:
assert source == "_get_default_group"
group = torch.distributed.distributed_c10d._get_default_group()
torch.distributed.all_reduce(
tensor,
group=group,
)
def verify(gm, _):
ar_nodes = []
for node in gm.graph.nodes:
if node.target in [
torch.ops.c10d_functional.all_reduce,
torch.ops._c10d_functional.all_reduce,
]:
ar_nodes.append(node)
self.assertEqual(len(ar_nodes), 1)
return gm
compiled = torch.compile(func, backend=verify, fullgraph=True)
input = torch.ones(2, device=self.device)
compiled(input)
def test_dynamo_support_collective_op_with_async_op_False(self):
def func(inp, out, *, pg):
# user explicitly set the attribute `async_op` to False,
# there should be no graph break
torch.distributed.reduce_scatter_tensor(out, inp, group=pg, async_op=False)
local_size = [4, 4]
# single-proc test
global_size = local_size
inputs = torch.ones(local_size, device=self.device)
outputs = torch.empty(global_size, device=self.device)
correct_outputs = torch.empty(global_size, device=self.device)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter)
compiled(inputs, outputs, pg=GroupMember.WORLD)
func(inputs, correct_outputs, pg=GroupMember.WORLD)
assert counter.frame_count == 1
assert counter.op_count == 3
assert same(outputs, correct_outputs)
def test_dynamo_graphbreaks_unsupported_async_op(self):
def func(inp, out, *, pg):
work = torch.distributed.reduce_scatter_tensor(
out, inp, group=pg, async_op=True
)
work.wait()
local_size = [4, 4]
# single-proc test
global_size = local_size
inputs = torch.ones(local_size, device=self.device)
outputs = torch.empty(global_size, device=self.device)
correct_outputs = torch.empty(global_size, device=self.device)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter)
compiled(inputs, outputs, pg=GroupMember.WORLD)
func(inputs, correct_outputs, pg=GroupMember.WORLD)
assert counter.frame_count == 0
assert counter.op_count == 0
assert same(outputs, correct_outputs)
def test_dynamo_pg_var(self):
def func(inp, *, pg):
x = pg.rank() + 1 % pg.size()
return inp + x
local_size = [4, 4]
inputs = torch.ones(local_size, device=self.device)
correct_outputs = torch.empty(local_size, device=self.device)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
outputs = compiled(inputs, pg=GroupMember.WORLD)
correct_outputs = func(inputs, pg=GroupMember.WORLD)
assert counter.frame_count == 1
assert counter.op_count == 1
assert same(outputs, correct_outputs)
def test_dynamo_trace_reduce_scatter_tensor(self):
def func(inp):
ar = _functional_collectives.reduce_scatter_tensor(inp, "sum", 0, "0")
return ar
inputs = torch.ones(4, 4, device="cuda")
counter = CompileCounter()
compiled = torch.compile(func, backend=counter)
out = compiled(inputs)
correct = func(inputs)
self.assertEqual(counter.frame_count, 1)
# should test more precisely, but the 2 is supposed to be (reduce_scatter, wait)
self.assertEqual(counter.op_count, 2)
self.assertTrue(same(out, correct))
def test_dynamo_trace_allgather_coalesced(self):
def func(inp, *, tag, ranks, group_size):
ar = torch.ops.c10d_functional.all_gather_into_tensor_coalesced(
inp, tag, ranks, group_size
)
return ar
inputs = [torch.ones(4, 4, device="cuda"), torch.ones(6, 6, device="cuda")]
counter = CompileCounter()
compiled = torch.compile(func, backend=counter)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
assert counter.frame_count == 1
assert counter.op_count == 3 # It generates 2 getattr to unpack the array
assert same(out, correct)
def test_backwards(self):
"""
It's probably not that common to need backwards support for collectives.
However, I wanted to at least see if it was possible to support it as a design goal.
"""
def func(inp):
ar = _functional_collectives.all_reduce(inp, "sum", "0")
return ar
input = torch.ones(4, 4, device="cuda", requires_grad=True)
compiled = torch.compile(
func, backend="aot_eager"
) # inductor bug with single-op allreduce graph
out = compiled(input)
out.sum().backward()
correct_input = input.detach().clone().requires_grad_()
correct = func(correct_input)
correct.sum().backward()
self.assertTrue(same(out, correct))
self.assertTrue(same(input.grad, correct_input.grad))
def test_meta(self):
x = torch.rand((2, 3, 4), device="meta")
out = torch.ops.c10d_functional.all_reduce(x, "sum", **self.get_world_trs())
self.assertEqual(x.size(), out.size())
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@torch._inductor.config.patch({"debug": True, "triton.descriptive_names": False})
def test_inductor_all_gather_coalesced(self):
"""
make sure that an intermediate that's going to be reuse isn't mutated unless copied
"""
def func(inp, *, tag, ranks, group_size):
x = inp + 1
tensor_list = torch.ops.c10d_functional.all_gather_into_tensor_coalesced(
[x, inp], tag, ranks, group_size
)
y = x + 2
ar0 = torch.ops.c10d_functional.wait_tensor(tensor_list[0])
ar1 = torch.ops.c10d_functional.wait_tensor(tensor_list[1])
# ensure other is not incorrectly aliasing ar's buffer
other = torch.ones_like(inp) + 22
return ar0, y, other, ar1
inputs = torch.ones(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
# NOTE: Make sure we are not unneccessarily copying the outputs of
# wait_tensors before they are returned from the graph.
(
FileCheck()
.check("buf0 = empty_strided")
.check("buf6 = empty_strided")
.check(".run(arg0_1, buf0, buf6, 16")
.check(
"buf1 = torch.ops._c10d_functional.all_gather_into_tensor_coalesced.default([buf0, arg0_1]"
)
.check("buf2 = buf1[0]")
.check("buf3 = buf1[1]")
.check("torch.ops._c10d_functional.wait_tensor.default(buf2")
.check("buf7 = buf0; del buf0 # reuse")
.check(".run(buf7, 16")
.check("torch.ops._c10d_functional.wait_tensor.default(buf3")
.check("return (buf2, buf6, buf7, buf3")
.run(code)
)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
assert same(out, correct), f"{out} va {correct}"
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@torch._inductor.config.patch({"debug": True, "triton.descriptive_names": False})
def test_inductor_reduce_scatter_coalesced(self):
"""
make sure that an intermediate that's going to be reuse isn't mutated unless copied
"""
def func(inp, *, tag, ranks, group_size):
x = inp + 1
tensor_list = torch.ops.c10d_functional.reduce_scatter_tensor_coalesced(
[x, inp], "sum", tag, ranks, group_size
)
y = x + 2
ar0 = torch.ops.c10d_functional.wait_tensor(tensor_list[0])
ar1 = torch.ops.c10d_functional.wait_tensor(tensor_list[1])
# ensure other is not incorrectly aliasing ar's buffer
other = torch.ones_like(inp) + 22
return ar0, y, other, ar1
inputs = torch.ones(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
# NOTE: The first return value should be the output of the first wait_tensor.
# We want to make sure no unneccessary copy is made.
(
FileCheck()
.check("buf0 = empty_strided")
.check("buf6 = empty_strided")
.check(".run(arg0_1, buf0, buf6, 16")
.check(
"buf1 = torch.ops._c10d_functional.reduce_scatter_tensor_coalesced.default([buf0, arg0_1]"
)
.check("buf2 = buf1[0]")
.check("buf3 = buf1[1]")
.check("torch.ops._c10d_functional.wait_tensor.default(buf2")
.check("buf7 = buf0; del buf0 # reuse")
.check(".run(buf7, 16")
.check("torch.ops._c10d_functional.wait_tensor.default(buf3")
.check("return (buf2, buf6, buf7, buf3")
.run(code)
)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
assert same(out, correct), f"{out} va {correct}"
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|