1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
|
# Owner(s): ["module: c10d"]
import os
from unittest import skipIf
import torch
import torch.distributed as dist
import torch.distributed._symmetric_memory as symm_mem
from torch._C._autograd import DeviceType
from torch._C._distributed_c10d import _SymmetricMemory
from torch._inductor.utils import fresh_inductor_cache, run_and_get_triton_code
from torch.distributed._functional_collectives import all_gather_tensor
from torch.distributed._symmetric_memory import (
_fused_all_gather_matmul_fallback,
_fused_all_gather_matmul_native,
_fused_all_gather_scaled_matmul_fallback,
_fused_matmul_reduce_scatter_fallback,
_fused_scaled_matmul_reduce_scatter_fallback,
enable_symm_mem_for_group,
restride_A_for_fused_matmul_reduce_scatter,
restride_A_shard_for_fused_all_gather_matmul,
)
from torch.testing._internal.common_cuda import _get_torch_cuda_version, SM90OrLater
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_multicast_support,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
requires_cuda,
run_tests,
skip_but_pass_in_sandcastle_if,
skipIfRocm,
TestCase,
)
def requires_cuda_p2p_access():
cuda_p2p_access_available = (
torch.cuda.is_available()
and torch.cuda.get_device_capability() >= (8, 0)
and torch.cuda.device_count() >= 2
)
num_devices = torch.cuda.device_count()
for i in range(num_devices - 1):
for j in range(i + 1, num_devices):
if not torch.cuda.can_device_access_peer(i, j):
cuda_p2p_access_available = False
break
if not cuda_p2p_access_available:
break
return skip_but_pass_in_sandcastle_if(
not cuda_p2p_access_available,
"cuda p2p access is not available",
)
@instantiate_parametrized_tests
@requires_cuda_p2p_access()
class SymmetricMemoryTest(MultiProcessTestCase):
def setUp(self) -> None:
super().setUp()
self._spawn_processes()
@property
def world_size(self) -> int:
return 2
@property
def device(self) -> torch.device:
return torch.device(f"cuda:{self.rank}")
def _init_process(self):
torch.cuda.set_device(self.device)
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend="nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
torch.manual_seed(42 + self.rank)
def test_has_multicast_support(self) -> None:
# validate that has_multicast_support() returns "false" instead of throwing
self.assertFalse(_SymmetricMemory.has_multicast_support(DeviceType.CPU, 0))
# NOTE: DeviceType.CUDA is implicitly tested through @requires_multicast_support
@skipIfRocm
@skip_if_lt_x_gpu(2)
def test_cuda_nvlink_connectivity_detection(self) -> None:
from torch._C._distributed_c10d import _detect_dma_connectivity
connectivity = _detect_dma_connectivity(DeviceType.CUDA, "nvlink")
self.assertEqual(connectivity.device_type, DeviceType.CUDA)
self.assertEqual(connectivity.connection_type, "nvlink")
self.assertEqual(len(connectivity.matrix), torch.cuda.device_count())
for row in connectivity.matrix:
self.assertEqual(len(row), torch.cuda.device_count())
@skipIfRocm
def test_large_alloc(self) -> None:
t = symm_mem.empty(2 * 1024**3, dtype=torch.uint8, device="cuda")
self.assertEqual(t.numel() * t.element_size(), 2 * 1024**3)
def _get_test_alloc_args(self):
shape = (64, 64)
stride = (64, 1)
dtype = torch.float32
device = self.device
group_name = "0"
return (shape, stride, dtype, device, group_name)
def _verify_symmetric_memory(self, symm_mem_hdl):
self.assertEqual(symm_mem_hdl.world_size, 2)
buf = symm_mem_hdl.get_buffer(
0, (symm_mem_hdl.buffer_size // 4,), torch.float32
)
self.assertEqual(buf.storage_offset(), 0)
self.assertEqual(buf.untyped_storage().size(), symm_mem_hdl.buffer_size)
if symm_mem_hdl.rank == 0:
symm_mem_hdl.wait_signal(src_rank=1)
self.assertTrue(buf.eq(42).all())
else:
buf.fill_(42)
symm_mem_hdl.put_signal(dst_rank=0)
symm_mem_hdl.barrier()
if symm_mem_hdl.rank == 0:
symm_mem_hdl.barrier()
self.assertTrue(buf.eq(43).all())
else:
buf.fill_(43)
symm_mem_hdl.barrier()
symm_mem_hdl.barrier()
@skipIfRocm
@skip_if_lt_x_gpu(2)
def test_empty_strided_p2p(self) -> None:
self._init_process()
enable_symm_mem_for_group(dist.group.WORLD.group_name)
alloc_args = self._get_test_alloc_args()
t = torch.empty((64, 64), device=self.device)
self.assertIsNone(_SymmetricMemory.rendezvous(t))
t = _SymmetricMemory.empty_strided_p2p(*alloc_args)
symm_mem_hdl = _SymmetricMemory.rendezvous(t)
del t
self._verify_symmetric_memory(symm_mem_hdl)
dist.destroy_process_group()
@skipIfRocm
@skip_if_lt_x_gpu(2)
def test_empty_strided_p2p_persistent(self) -> None:
self._init_process()
enable_symm_mem_for_group(dist.group.WORLD.group_name)
alloc_args = self._get_test_alloc_args()
t = _SymmetricMemory.empty_strided_p2p(*alloc_args, alloc_id=42)
data_ptr = t.data_ptr()
# Verify that persistent allocation would fail if there's an active
# allocation with the same alloc_id.
with self.assertRaises(RuntimeError):
_SymmetricMemory.empty_strided_p2p(*alloc_args, alloc_id=42)
# Verify that persistent allocation would succeed in lieu of activate
# allocations with the same alloc_id, and the returned tensor would
# have the same data pointer.
del t
t = _SymmetricMemory.empty_strided_p2p(*alloc_args, alloc_id=42)
self.assertEqual(t.data_ptr(), data_ptr)
symm_mem_hdl = _SymmetricMemory.rendezvous(t)
self._verify_symmetric_memory(symm_mem_hdl)
dist.destroy_process_group()
@skipIfRocm
@skip_if_lt_x_gpu(2)
def test_get_signal_pad(self) -> None:
self._init_process()
t = symm_mem.empty(1, device="cuda")
symm_mem_hdl = symm_mem.rendezvous(t, group=dist.group.WORLD)
peer_rank = (self.rank + 1) % self.world_size
signal_pad = symm_mem_hdl.get_signal_pad(self.rank)
self.assertEqual(
signal_pad.data_ptr(), symm_mem_hdl.signal_pad_ptrs[symm_mem_hdl.rank]
)
signal_pad = symm_mem_hdl.get_signal_pad(peer_rank)
self.assertEqual(signal_pad.dtype, torch.uint32)
self.assertEqual(signal_pad.numel(), symm_mem_hdl.signal_pad_size // 4)
# Only specify sizes
signal_pad = symm_mem_hdl.get_signal_pad(peer_rank, (8, 8))
self.assertEqual(signal_pad.dtype, torch.uint32)
self.assertEqual(signal_pad.numel(), 64)
# Only specify dtype
signal_pad = symm_mem_hdl.get_signal_pad(peer_rank, dtype=torch.uint64)
self.assertEqual(signal_pad.dtype, torch.uint64)
self.assertEqual(signal_pad.numel(), symm_mem_hdl.signal_pad_size // 8)
# Specify both sizes and dtype
signal_pad = symm_mem_hdl.get_signal_pad(peer_rank, (8, 8), dtype=torch.uint64)
self.assertEqual(signal_pad.dtype, torch.uint64)
self.assertEqual(signal_pad.numel(), 64)
# Sanity check that writes to buffer doesn't corrupt signal_pad
t = symm_mem.empty(0, device="cuda")
symm_mem_hdl = symm_mem.rendezvous(t, group=dist.group.WORLD)
signal_pad = symm_mem_hdl.get_signal_pad(self.rank)
signal_pad.fill_(42)
t.fill_(0)
self.assertTrue(signal_pad.eq(42).all())
dist.destroy_process_group()
@skipIfRocm
@skip_if_lt_x_gpu(2)
def test_barrier_timeout(self) -> None:
self._init_process()
t = symm_mem.empty(1, device="cuda")
symm_mem_hdl = symm_mem.rendezvous(t, group=dist.group.WORLD)
if self.rank == 0:
with self.assertRaises(RuntimeError):
symm_mem_hdl.barrier(timeout_ms=1000)
torch.cuda.synchronize()
else:
torch.cuda.synchronize()
# The device-side timeout triggers a __trap() that causes all
# subsequent host/device interactions to result in an "unspecified
# launch failure." Using os._exit(0) to abort the test, as it's
# impossible to terminate the process in this state.
os._exit(0)
@skipIfRocm
@skip_if_lt_x_gpu(2)
def test_put_signal_timeout(self) -> None:
self._init_process()
t = symm_mem.empty(1, device="cuda")
symm_mem_hdl = symm_mem.rendezvous(t, group=dist.group.WORLD)
if self.rank == 0:
with self.assertRaises(RuntimeError):
# First, put a signal into rank 1's signal pad. Since rank 1
# doesn't wait on this signal, the subsequent put will timeout.
symm_mem_hdl.put_signal(dst_rank=1)
symm_mem_hdl.put_signal(dst_rank=1, timeout_ms=1000)
torch.cuda.synchronize()
else:
torch.cuda.synchronize()
# The device-side timeout triggers a __trap() that causes all
# subsequent host/device interactions to result in an "unspecified
# launch failure." Using os._exit(0) to abort the test, as it's
# impossible to terminate the process in this state.
os._exit(0)
@skipIfRocm
@skip_if_lt_x_gpu(2)
def test_wait_signal_timeout(self) -> None:
self._init_process()
t = symm_mem.empty(1, device="cuda")
symm_mem_hdl = symm_mem.rendezvous(t, group=dist.group.WORLD)
if self.rank == 0:
with self.assertRaises(RuntimeError):
symm_mem_hdl.wait_signal(src_rank=1, timeout_ms=1000)
torch.cuda.synchronize()
else:
torch.cuda.synchronize()
# The device-side timeout triggers a __trap() that causes all
# subsequent host/device interactions to result in an "unspecified
# launch failure." Using os._exit(0) to abort the test, as it's
# impossible to terminate the process in this state.
os._exit(0)
@skipIfRocm
@requires_cuda
def test_allow_overlapping_devices(self) -> None:
os.environ["TORCH_SYMM_MEM_ALLOW_OVERLAPPING_DEVICES"] = "1"
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend="nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
t = symm_mem.empty(64, device="cuda:0")
symm_mem_hdl = symm_mem.rendezvous(t, group=dist.group.WORLD)
self.assertEqual(symm_mem_hdl.rank, self.rank)
self.assertEqual(symm_mem_hdl.world_size, self.world_size)
for rank in range(self.world_size):
buf = symm_mem_hdl.get_buffer(rank, (64,), torch.float32)
if rank == self.rank:
self.assertEqual(buf.data_ptr(), t.data_ptr())
else:
self.assertEqual(buf.device, t.device)
dist.destroy_process_group()
@skipIfRocm
@skip_if_lt_x_gpu(2)
@parametrize("gather_dim", [0, 1])
def test_fused_all_gather_matmul(self, gather_dim: int) -> None:
self._init_process()
BATCH = 8
M = 64
N = 16
K = 32
group = dist.group.WORLD
rank = self.rank
world_size = self.world_size
torch.manual_seed(42 + rank)
A_shard = torch.rand(BATCH, M // self.world_size, K, device="cuda")
Bs = [torch.rand(K, N, device="cuda") for _ in range(3)]
ag_output_0, mm_outputs_0 = _fused_all_gather_matmul_fallback(
A_shard, Bs, gather_dim=gather_dim, group_name=group.group_name
)
ag_output_1, mm_outputs_1 = torch.ops.symm_mem.fused_all_gather_matmul(
A_shard, Bs, gather_dim=gather_dim, group_name=group.group_name
)
assert torch.allclose(ag_output_0, ag_output_1)
assert ag_output_0.stride() == ag_output_1.stride()
for mm_output_0, mm_output_1 in zip(mm_outputs_0, mm_outputs_1):
assert torch.allclose(mm_output_0, mm_output_1)
assert mm_output_0.stride(), mm_output_1.stride()
dist.destroy_process_group()
@skipIfRocm
@skipIf(
not SM90OrLater,
"_fused_all_gather_matmul_native currently only supports sm>=90",
)
@skip_if_lt_x_gpu(2)
@parametrize("symm_mem_input", [True, False])
@parametrize("is_b_row_major", [True, False])
def test_fused_all_gather_matmul_native(
self, symm_mem_input: bool, is_b_row_major: bool
) -> None:
self._init_process()
M = 1024
N = 1024
K = 1024
group_name = dist.group.WORLD.group_name
torch.manual_seed(42 + self.rank)
if symm_mem_input:
A_shard = _SymmetricMemory.empty_strided_p2p(
size=(M // self.world_size, K),
stride=(K, 1),
dtype=torch.bfloat16,
device=self.device,
group_name="0",
).normal_()
else:
A_shard = torch.rand(
M // self.world_size, K, dtype=torch.bfloat16, device="cuda"
)
if is_b_row_major:
B = torch.rand(K, N, dtype=torch.bfloat16, device="cuda")
else:
B = torch.rand(N, K, dtype=torch.bfloat16, device="cuda").t()
ag_baseline, mm_baseline = _fused_all_gather_matmul_fallback(
A_shard, [B], gather_dim=0, group_name=group_name
)
ag_target, mm_target = _fused_all_gather_matmul_native(
A_shard, B, group_name=group_name
)
torch.testing.assert_close(ag_target, ag_baseline)
torch.testing.assert_close(mm_target, mm_baseline[0])
dist.destroy_process_group()
@skipIfRocm
@skip_if_lt_x_gpu(2)
@parametrize("gather_dim", [0, 1])
@parametrize(
"scale_mode", ["tensor-wise", "row-wise-replicated", "row-wise-sharded"]
)
def test_fused_all_gather_scaled_matmul(
self, gather_dim: int, scale_mode: str
) -> None:
self._init_process()
BATCH = 8
M = 64
N = 16
K = 32
group = dist.group.WORLD
rank = self.rank
world_size = self.world_size
if gather_dim == 0:
leading_dims = (BATCH // self.world_size, M)
elif gather_dim == 1:
leading_dims = (BATCH, M // self.world_size)
else:
raise AssertionError("Invalid scale_mode: {scale_mode}")
torch.manual_seed(42 + rank)
A_shard = torch.rand(*leading_dims, K, device="cuda").to(torch.float8_e4m3fn)
Bs = [
torch.rand(N, K, device="cuda").to(torch.float8_e4m3fn).T for _ in range(3)
]
if scale_mode == "tensor-wise":
A_scale = torch.tensor(0.1, device="cuda")
B_scales = [torch.tensor(0.1, device="cuda") for _ in range(3)]
out_dtypes = [None, torch.bfloat16, torch.float32]
elif scale_mode == "row-wise-sharded":
A_scale = torch.full((*leading_dims, 1), 0.1, device="cuda")
B_scales = [torch.full((1, N), 0.1, device="cuda") for _ in range(3)]
out_dtypes = [torch.bfloat16] * 3
elif scale_mode == "row-wise-replicated":
A_scale = torch.full((BATCH, M, 1), 0.1, device="cuda")
B_scales = [torch.full((1, N), 0.1, device="cuda") for _ in range(3)]
out_dtypes = [torch.bfloat16] * 3
else:
raise AssertionError(f"Invalid scale_mode: {scale_mode}")
ag_output_0, mm_outputs_0 = _fused_all_gather_scaled_matmul_fallback(
A_shard,
Bs,
A_scale,
B_scales,
gather_dim=gather_dim,
group_name=group.group_name,
biases=[None] * len(Bs),
result_scales=[None] * len(Bs),
out_dtypes=out_dtypes,
use_fast_accum=[None] * len(Bs),
)
ag_output_1, mm_outputs_1 = torch.ops.symm_mem.fused_all_gather_scaled_matmul(
A_shard,
Bs,
A_scale,
B_scales,
gather_dim=gather_dim,
group_name=group.group_name,
biases=[None] * len(Bs),
result_scales=[None] * len(Bs),
out_dtypes=out_dtypes,
use_fast_accum=[None] * len(Bs),
)
self.assertTrue(
torch.allclose(
ag_output_0.to(torch.float32),
ag_output_1.to(torch.float32),
)
)
self.assertEqual(ag_output_0.stride(), ag_output_1.stride())
for mm_output_0, mm_output_1 in zip(mm_outputs_0, mm_outputs_1):
self.assertTrue(
torch.allclose(
mm_output_0.to(torch.float32), mm_output_1.to(torch.float32)
)
)
self.assertEqual(mm_output_0.stride(), mm_output_1.stride())
self.assertEqual(mm_output_0.dtype, mm_output_1.dtype)
dist.destroy_process_group()
@skipIfRocm
@skip_if_lt_x_gpu(2)
@parametrize("scatter_dim", [0, 1])
def test_fused_matmul_reduce_scatter(self, scatter_dim: int) -> None:
self._init_process()
BATCH = 8
M = 64
N = 16
K = 32
group = dist.group.WORLD
rank = self.rank
world_size = self.world_size
torch.manual_seed(42 + rank)
A = torch.rand(BATCH, M, K, device="cuda")
B = torch.rand(K, N, device="cuda")
output_0 = _fused_matmul_reduce_scatter_fallback(
A, B, "avg", scatter_dim=scatter_dim, group_name=group.group_name
)
output_1 = torch.ops.symm_mem.fused_matmul_reduce_scatter(
A, B, "avg", scatter_dim=scatter_dim, group_name=group.group_name
)
assert torch.allclose(output_0, output_1)
assert output_0.stride() == output_1.stride()
dist.destroy_process_group()
@skipIfRocm
@skip_if_lt_x_gpu(2)
@parametrize("scatter_dim", [0, 1])
@parametrize("rowwise", [True, False])
def test_fused_scaled_matmul_reduce_scatter(
self, scatter_dim: int, rowwise: bool
) -> None:
self._init_process()
BATCH = 8
M = 64
N = 16
K = 32
group = dist.group.WORLD
rank = self.rank
world_size = self.world_size
torch.manual_seed(42 + rank)
A = torch.rand(BATCH, M, K, device="cuda").to(torch.float8_e4m3fn)
B = torch.rand(N, K, device="cuda").to(torch.float8_e4m3fn).T
if rowwise:
A_scale = torch.full((BATCH, M, 1), 0.1, device="cuda")
B_scale = torch.full((1, N), 0.1, device="cuda")
else:
A_scale = torch.tensor(0.1, device="cuda")
B_scale = torch.tensor(0.1, device="cuda")
output_0 = _fused_scaled_matmul_reduce_scatter_fallback(
A,
B,
A_scale,
B_scale,
"avg",
scatter_dim,
group.group_name,
out_dtype=torch.bfloat16,
)
output_1 = torch.ops.symm_mem.fused_scaled_matmul_reduce_scatter(
A,
B,
A_scale,
B_scale,
"avg",
scatter_dim,
group.group_name,
out_dtype=torch.bfloat16,
)
assert torch.allclose(output_0, output_1)
assert output_0.stride() == output_1.stride()
dist.destroy_process_group()
@skipIfRocm
@parametrize("dim", [0, 1, 2])
def test_optimal_layout(self, dim: int) -> None:
t = torch.rand(8, 64, 32, 16)
x = restride_A_shard_for_fused_all_gather_matmul(t, dim)
self.assertTrue(x.movedim(dim, 0).is_contiguous())
self.assertTrue(torch.allclose(x, t))
x = restride_A_for_fused_matmul_reduce_scatter(t, dim)
self.assertTrue(x.movedim(dim, 0).is_contiguous())
self.assertTrue(torch.allclose(x, t))
@skipIfRocm
@skip_if_lt_x_gpu(2)
@parametrize("symm_mem_input", [True, False])
def test_low_contention_all_gather(self, symm_mem_input: bool) -> None:
self._init_process()
if symm_mem_input:
t = _SymmetricMemory.empty_strided_p2p(
size=(64, 64),
stride=(64, 1),
dtype=torch.float32,
device=self.device,
group_name="0",
).fill_(self.rank)
else:
t = torch.full((64, 64), self.rank, dtype=torch.float32, device=self.device)
res = torch.ops.symm_mem._low_contention_all_gather(t, "0")
res = torch.ops._c10d_functional.wait_tensor(res)
self.assertEqual(res.shape, (64 * self.world_size, 64))
chunks = res.chunk(self.world_size)
for r in range(self.world_size):
self.assertTrue(chunks[r].eq(r).all())
dist.destroy_process_group()
@skipIfRocm
@skip_if_lt_x_gpu(2)
@parametrize("reduce_op", ["sum", "avg"])
@parametrize("symm_mem_input", [True, False])
def test_low_contention_reduce_scatter(
self, reduce_op: str, symm_mem_input: bool
) -> None:
self._init_process()
if symm_mem_input:
t = _SymmetricMemory.empty_strided_p2p(
size=(64, 64),
stride=(64, 1),
dtype=torch.float32,
device=self.device,
group_name="0",
)
else:
t = torch.empty((64, 64), dtype=torch.float32, device=self.device)
chunks = t.chunk(self.world_size)
for r in range(self.world_size):
chunks[r].fill_(r)
res = torch.ops.symm_mem._low_contention_reduce_scatter(t, reduce_op, "0")
res = torch.ops._c10d_functional.wait_tensor(res)
self.assertEqual(res.shape, (64 // self.world_size, 64))
if reduce_op == "sum":
expect = self.rank * self.world_size
elif reduce_op == "avg":
expect = self.rank
else:
raise AssertionError(f"Unexpected reduce_op: {reduce_op}")
self.assertTrue(res.eq(expect).all())
dist.destroy_process_group()
@instantiate_parametrized_tests
@requires_cuda_p2p_access()
class SubgroupTest(MultiProcessTestCase):
def setUp(self) -> None:
super().setUp()
self._spawn_processes()
@property
def world_size(self) -> int:
return 4
@property
def device(self) -> torch.device:
return torch.device(f"cuda:{self.rank}")
def _init_process(self):
torch.cuda.set_device(self.device)
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend="nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
torch.manual_seed(42 + self.rank)
@skipIfRocm
@skip_if_lt_x_gpu(4)
def test_subgroup(self) -> None:
self._init_process()
ranks = list(range(self.world_size))
subgroup_0 = dist.new_group(ranks[: len(ranks) // 2])
subgroup_1 = dist.new_group(ranks[len(ranks) // 2 :])
world = dist.group.WORLD
subgroup = subgroup_0 if world.rank() < world.size() // 2 else subgroup_1
t = symm_mem.empty(64, device="cuda")
symm_mem_world = symm_mem.rendezvous(t, group=world)
symm_mem_subgroup = symm_mem.rendezvous(t, group=subgroup)
self.assertEqual(symm_mem_world.world_size, world.size())
self.assertEqual(symm_mem_world.rank, world.rank())
self.assertEqual(symm_mem_subgroup.world_size, world.size() // 2)
self.assertEqual(symm_mem_subgroup.rank, world.rank() % subgroup.size())
t.fill_(world.rank())
symm_mem_world.barrier()
# Observe a peer buffer via the world group
peer_rank = (world.rank() + 1) % world.size()
buf = symm_mem_world.get_buffer(peer_rank, (64,), torch.float32)
self.assertTrue(buf.eq(peer_rank).all())
# Observe a peer buffer via the subgroup
peer_rank = (subgroup.rank() + 1) % subgroup.size()
buf = symm_mem_subgroup.get_buffer(peer_rank, (64,), torch.float32)
if world.rank() < world.size() // 2:
self.assertTrue(buf.eq(peer_rank).all())
else:
self.assertTrue(buf.eq(peer_rank + world.size() // 2).all())
@instantiate_parametrized_tests
@requires_cuda_p2p_access()
class SymmMemAllReduceTest(MultiProcessTestCase):
def setUp(self) -> None:
super().setUp()
self._spawn_processes()
@property
def world_size(self) -> int:
# world_size > 2 is needed to verify accumulation order
return 4
@property
def device(self) -> torch.device:
return torch.device(f"cuda:{self.rank}")
def _init_process(self):
torch.cuda.set_device(self.device)
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend="nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
torch.manual_seed(42 + self.rank)
@skip_if_lt_x_gpu(4)
@requires_multicast_support()
@parametrize("dtype", [torch.float, torch.bfloat16])
@parametrize("align_bytes", [4, 8, 16])
@parametrize("size_bytes", [4, 8192, 8196])
def test_multimem_all_reduce(
self, dtype: torch.dtype, size_bytes: int, align_bytes: int
) -> None:
self._init_process()
group_name = dist.group.WORLD.group_name
t = symm_mem.empty((16384), dtype=dtype, device=self.device)
symm_mem.rendezvous(t, group=dist.group.WORLD)
self.assertTrue(t.data_ptr() % 16 == 0)
self.assertTrue(align_bytes % t.element_size() == 0)
self.assertTrue(size_bytes % t.element_size() == 0)
shift = align_bytes // t.element_size()
numel = size_bytes // t.element_size()
res = t[shift : shift + numel]
res.normal_()
inp = res.clone()
torch.ops.symm_mem.multimem_all_reduce_(res, "sum", group_name)
# Head and tail should not be written
self.assertTrue(t[:shift].eq(0).all().item())
self.assertTrue(t[shift + numel :].eq(0).all().item())
self._verify_all_reduce_result(inp, res)
dist.destroy_process_group()
@skip_if_lt_x_gpu(4)
@requires_multicast_support()
@parametrize("dtype", [torch.float, torch.bfloat16])
@parametrize("align_bytes", [4, 8, 16])
@parametrize("size_bytes", [4, 8192, 8196])
def test_multimem_one_shot_all_reduce(
self, dtype: torch.dtype, size_bytes: int, align_bytes: int
) -> None:
self._init_process()
group_name = dist.group.WORLD.group_name
inp = symm_mem.empty(
size_bytes // dtype.itemsize, dtype=dtype, device=self.device
).normal_()
symm_mem.rendezvous(inp, group=group_name)
res = torch.ops.symm_mem.multimem_one_shot_all_reduce(inp, "sum", group_name)
gathered_inps = all_gather_tensor(inp, 0, "0").view(self.world_size, -1)
# Only verify that the results are close to the sum of inputs across
# ranks (see Note [multimem_one_shot_all_reduce]).
torch.testing.assert_close(
gathered_inps.sum(dim=0), res, rtol=1e-03, atol=1e-05
)
dist.destroy_process_group()
@skip_if_lt_x_gpu(4)
@parametrize("dtype", [torch.float, torch.bfloat16])
@parametrize("align_bytes", [4, 8, 16])
@parametrize("size_bytes", [4, 8192, 8196])
def test_one_shot_all_reduce(
self, dtype: torch.dtype, size_bytes: int, align_bytes: int
) -> None:
self._init_process()
group_name = dist.group.WORLD.group_name
inp = symm_mem.empty(
size_bytes // dtype.itemsize, dtype=dtype, device=self.device
).normal_()
symm_mem.rendezvous(inp, group=group_name)
res = torch.ops.symm_mem.one_shot_all_reduce(inp, "sum", group_name)
self._verify_all_reduce_result(inp, res)
dist.destroy_process_group()
@skip_if_lt_x_gpu(4)
@parametrize("dtype", [torch.float, torch.bfloat16])
@parametrize("align_bytes", [4, 8, 16])
@parametrize("size_bytes", [4, 8192, 8196])
def test_two_shot_all_reduce(
self, dtype: torch.dtype, size_bytes: int, align_bytes: int
) -> None:
self._init_process()
group_name = dist.group.WORLD.group_name
t = symm_mem.empty(16384, dtype=dtype, device=self.device).fill_(0)
symm_mem.rendezvous(t, group=group_name)
self.assertTrue(t.data_ptr() % 16 == 0)
self.assertTrue(align_bytes % t.element_size() == 0)
self.assertTrue(size_bytes % t.element_size() == 0)
shift = align_bytes // t.element_size()
numel = size_bytes // t.element_size()
res = t[shift : shift + numel]
res.normal_()
inp = res.clone()
torch.ops.symm_mem.two_shot_all_reduce_(res, "sum", group_name)
# Head and tail should not be written
self.assertTrue(t[:shift].eq(0).all().item())
self.assertTrue(t[shift + numel :].eq(0).all().item())
self._verify_all_reduce_result(inp, res)
dist.destroy_process_group()
def _verify_all_reduce_result(self, inp, res):
gathered_res = all_gather_tensor(res, 0, "0").view(self.world_size, -1)
# Verify that the results across ranks are identical
self.assertEqual(
(gathered_res == gathered_res[0, :]).all(dim=0).sum(), inp.numel()
)
# Verify that the result are close to the sum of inputs across ranks
gathered_inps = all_gather_tensor(inp, 0, "0").view(self.world_size, -1)
torch.testing.assert_close(
gathered_inps.sum(dim=0), res, rtol=1e-01, atol=1e-01
)
@instantiate_parametrized_tests
@requires_cuda_p2p_access()
class LoweringTest(MultiProcessTestCase):
def setUp(self) -> None:
super().setUp()
self._spawn_processes()
@property
def world_size(self) -> int:
return 2
@property
def device(self) -> torch.device:
return torch.device(f"cuda:{self.rank}")
def _init_process(self):
torch.cuda.set_device(self.device)
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend="nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
)
enable_symm_mem_for_group(dist.group.WORLD.group_name)
torch.manual_seed(42 + self.rank)
torch._inductor.config._collective.auto_select = True
@skipIfRocm # requires registered-buffer support
@skip_if_lt_x_gpu(2)
@fresh_inductor_cache()
def test_lowering_one_shot_all_reduce(self):
self._init_process()
arg = torch.rand(4, 4, device=self.device)
def func_0(x):
x = x + 1
x = torch.ops._c10d_functional.all_reduce(x, "sum", "0")
return torch.ops._c10d_functional.wait_tensor(x)
compiled_0 = torch.compile(func_0, fullgraph=True)
code_0 = run_and_get_triton_code(compiled_0, arg)
self.assertIn("one_shot_all_reduce", code_0)
self.assertNotIn("return (buf0", code_0)
# All-reduce on a slice view
def func_1(x):
x = x + 1
x = x[2:]
x = torch.ops._c10d_functional.all_reduce(x, "sum", "0")
return torch.ops._c10d_functional.wait_tensor(x)
compiled_1 = torch.compile(func_1, fullgraph=True)
code_1 = run_and_get_triton_code(compiled_1, arg)
self.assertIn("one_shot_all_reduce", code_1)
self.assertNotIn("return (buf0", code_1)
# All-reduce on input
def func_2(x):
x = torch.ops._c10d_functional.all_reduce(x, "sum", "0")
return torch.ops._c10d_functional.wait_tensor(x)
compiled_2 = torch.compile(func_2, fullgraph=True)
code_2 = run_and_get_triton_code(compiled_2, arg)
self.assertNotIn("one_shot_all_reduce", code_2)
# All-reduce on matmul output
def func_3(x):
x = x @ x
x = torch.ops._c10d_functional.all_reduce(x, "sum", "0")
return torch.ops._c10d_functional.wait_tensor(x)
compiled_3 = torch.compile(func_3, fullgraph=True)
code_3 = run_and_get_triton_code(compiled_3, arg)
self.assertIn("one_shot_all_reduce", code_3)
self.assertNotIn("return (buf0", code_3)
class SymmMemSingleProcTest(TestCase):
@skipIfRocm
@requires_cuda
@skipIf(
_get_torch_cuda_version() < (12, 0),
"stream_write_value32 currently only supports cuda version>=12.0",
)
def test_stream_write_value32(self):
tensor = torch.zeros(4, dtype=torch.uint32, device="cuda")
expect = torch.tril(torch.ones(4, 4, device="cuda")).to(torch.uint32)
for i in range(4):
_SymmetricMemory.stream_write_value32(tensor, i, 1)
torch.testing.assert_close(tensor, expect[i])
with self.assertRaises(RuntimeError):
_SymmetricMemory.stream_write_value32(tensor, offset=-1, val=1)
with self.assertRaises(RuntimeError):
_SymmetricMemory.stream_write_value32(tensor, offset=0, val=4294967296)
@skipIfRocm
@requires_cuda
def test_memset32(self):
t = _SymmetricMemory.empty_strided_p2p(
(64,),
(1,),
dtype=torch.uint32,
device=torch.device("cuda:0"),
group_name="0",
).fill_(0)
_SymmetricMemory.memset32(t, offset=32, val=1, count=16)
self.assertTrue(t[:32].eq(0).all())
self.assertTrue(t[32:48].eq(1).all())
self.assertTrue(t[48:].eq(0).all())
with self.assertRaisesRegex(
RuntimeError, "input must be a flat, contiguous uint32 tensor"
):
_SymmetricMemory.memset32(t.view(8, 8), offset=0, val=1, count=1)
with self.assertRaisesRegex(
RuntimeError, "input must be a flat, contiguous uint32 tensor"
):
_SymmetricMemory.memset32(t.view(torch.float32), offset=0, val=1, count=1)
with self.assertRaisesRegex(
RuntimeError, "offset must be greater than or equal to 0"
):
_SymmetricMemory.memset32(t, offset=-1, val=1, count=1)
with self.assertRaisesRegex(
RuntimeError, r"val must be in the range of.*\(uint32_t\)"
):
_SymmetricMemory.memset32(t, offset=0, val=4294967296, count=1)
with self.assertRaisesRegex(RuntimeError, "count must be a positive integer"):
_SymmetricMemory.memset32(t, offset=0, val=1, count=-1)
with self.assertRaisesRegex(RuntimeError, "count must be a positive integer"):
_SymmetricMemory.memset32(t, offset=0, val=1, count=0)
with self.assertRaisesRegex(
RuntimeError, r"offset \+ count.*exceeded the numel of the input"
):
_SymmetricMemory.memset32(t, offset=64, val=1, count=1)
with self.assertRaisesRegex(
RuntimeError, r"offset \+ count.*exceeded the numel of the input"
):
_SymmetricMemory.memset32(t, offset=0, val=1, count=65)
_SymmetricMemory.memset32(t, offset=0, val=1, count=64)
_SymmetricMemory.memset32(t, offset=63, val=1, count=1)
if __name__ == "__main__":
run_tests()
|