1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
# Owner(s): ["module: dynamo"]
import io
import os
import shutil
import sys
import tempfile
import unittest
import torch._dynamo.test_case
from torch._dynamo.repro.after_aot import InputReader, InputWriter, save_graph_repro
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_utils import IS_FBCODE
from torch.utils._traceback import report_compile_source_on_error
def strip_trailing_whitespace(r):
return "\n".join([l.rstrip() for l in r.split("\n")])
class TestAfterAot(torch._dynamo.test_case.TestCase):
@unittest.skipIf(IS_FBCODE, "NotImplementedError")
def test_save_graph_repro(self):
# TODO: This triggers CUDA context initialization, even though
# it is CPU only
buf = io.StringIO()
args = [torch.randn(4)]
def f(x):
return (x * x,)
gm = make_fx(f)(*args)
with tempfile.TemporaryDirectory() as d:
save_graph_repro(buf, gm, args, "inductor_accuracy", save_dir=d)
r = buf.getvalue()
with report_compile_source_on_error():
exec(r, {"__compile_source__": r})
shutil.rmtree(os.path.join(d, "storages"))
# Should still work even without the save dir
with report_compile_source_on_error():
exec(r, {"__compile_source__": r})
@unittest.skipIf(sys.byteorder != "little", "checksum depends on endianness")
def test_dump_tensor(self):
def test(tensor, expected):
with tempfile.TemporaryDirectory() as d:
writer = InputWriter(d, stable_hash=True)
writer.tensor("x", tensor)
self.assertExpectedInline("\n".join(writer._lines), expected, skip=1)
reader = InputReader(d)
env = {"reader": reader, "torch": torch}
# TODO: assert no logs
exec("\n".join(writer._lines), env)
self.assertEqual(reader.args[0], tensor)
test(
torch.zeros(3, 4),
"""\
buf0 = reader.storage('c17fd92682ca5b304ac71074b558dda9e8eb4d66', 48)
reader.tensor(buf0, (3, 4), is_leaf=True) # x""",
)
test(
torch.ones(3, 4, dtype=torch.int32),
"""\
buf0 = reader.storage('7c221e2da0c58c700cc2996644dd13d042bd552e', 48, dtype_hint=torch.int32)
reader.tensor(buf0, (3, 4), dtype=torch.int32, is_leaf=True) # x""",
)
test(
torch.empty((3, 4, 5, 6), memory_format=torch.channels_last).fill_(2),
"""\
buf0 = reader.storage('49ebab3961d6221e64c4c72b0aefd976bdd2afc4', 1440)
reader.tensor(buf0, (3, 4, 5, 6), (120, 1, 24, 4), is_leaf=True) # x""",
)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|