File: test_autograd_function.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1351 lines) | stat: -rw-r--r-- 44,178 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
# Owner(s): ["module: dynamo"]
# flake8: noqa: B950
import copy
import math
from dataclasses import dataclass

import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_CUDA, requires_cuda


if HAS_CUDA:
    import triton

    from torch.testing._internal.triton_utils import add_kernel


class CustomFunc1(torch.autograd.Function):
    @staticmethod
    def forward(ctx, foo):
        return foo + foo

    @staticmethod
    def backward(ctx, grad_output):
        return grad_output


class CustomFunc3(torch.autograd.Function):
    # Test there is graph break in forward function
    @staticmethod
    def forward(ctx, foo):
        result = foo + foo
        torch._dynamo.graph_break()
        result = result + foo
        ctx.save_for_backward(result)
        return result

    @staticmethod
    def backward(ctx, grad_output):
        (result,) = ctx.saved_tensors
        return grad_output * math.sqrt(result.numel())


class Module1(torch.nn.Module):
    def forward(self, foo):
        return CustomFunc1().apply(foo)


class Module2(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.fn = CustomFunc1.apply

    def forward(self, foo):
        return self.fn(foo)


class Module3(torch.nn.Module):
    def forward(self, foo):
        return CustomFunc1().apply(foo)


class Module4(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.fn = CustomFunc1.apply

    def forward(self, foo):
        return self.fn(foo)


class Module5(torch.nn.Module):
    def forward(self, foo):
        return CustomFunc3().apply(foo)


class Module6(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.fn = CustomFunc3.apply

    def forward(self, foo):
        return self.fn(foo)


class LinearFunction(torch.autograd.Function):
    # Note that forward, setup_context, and backward are @staticmethods
    @staticmethod
    def forward(input, weight, bias):
        output = input.mm(weight.t())
        if bias is not None:
            output += bias.unsqueeze(0).expand_as(output)
        return output

    @staticmethod
    # inputs is a Tuple of all of the inputs passed to forward.
    # output is the output of the forward().
    def setup_context(ctx, inputs, output):
        input, weight, bias = inputs
        ctx.save_for_backward(input, weight, bias)

    # This function has only a single output, so it gets only one gradient
    @staticmethod
    def backward(ctx, grad_output):
        input, weight, bias = ctx.saved_tensors
        grad_input = grad_weight = grad_bias = None
        if ctx.needs_input_grad[0]:
            grad_input = grad_output.mm(weight)
        if ctx.needs_input_grad[1]:
            grad_weight = grad_output.t().mm(input)
        if bias is not None and ctx.needs_input_grad[2]:
            grad_bias = grad_output.sum(0)

        return grad_input, grad_weight, grad_bias


class ModuleLinear(torch.nn.Module):
    def forward(self, input, weight, bias=None):
        return LinearFunction.apply(input, weight, bias)


class MaterializingGradFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        ctx.set_materialize_grads(False)
        return x.clone(), x.clone()

    @staticmethod
    def backward(ctx, grad_out1, grad_out2):
        return grad_out1, grad_out2


class MaterializingGradModule(torch.nn.Module):
    def forward(self, x):
        return MaterializingGradFunction.apply(x)


class CustomFuncBwdPrintGraphBreak(torch.autograd.Function):
    @staticmethod
    def forward(ctx, foo):
        return torch.add(foo, foo)

    @staticmethod
    def backward(ctx, grad_output):
        print("graph break!")
        return grad_output


class CustomFuncBwdPrintModule(torch.nn.Module):
    def forward(self, x):
        return CustomFuncBwdPrintGraphBreak.apply(x)


class CustomFuncStrideBwd(torch.autograd.Function):
    @staticmethod
    def forward(ctx, foo):
        return torch.add(foo, foo)

    @staticmethod
    def backward(ctx, grad_output):
        return grad_output.stride()


class CustomFuncStrideModule(torch.nn.Module):
    def forward(self, x):
        return CustomFuncStrideBwd.apply(x)


class CustomFuncSaveForBwd(torch.autograd.Function):
    @staticmethod
    def forward(ctx, foo):
        result = foo + foo
        result = result + foo
        ctx.save_for_backward(result)
        return result

    @staticmethod
    def backward(ctx, grad_output):
        (result,) = ctx.saved_tensors
        return grad_output * math.sqrt(result.numel())


class SaveForBwdModule(torch.nn.Module):
    def forward(self, foo):
        return CustomFuncSaveForBwd().apply(foo)


class ContextSaveAndMark(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        with torch.no_grad():
            ctx.save_for_backward(x)
            ctx.mark_non_differentiable(x)
            return x

    @staticmethod
    def backward(ctx, grad_output):
        return grad_output


class ContextMarkAndSave(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        with torch.no_grad():
            ctx.mark_non_differentiable(x)
            ctx.save_for_backward(x)
            return x

    @staticmethod
    def backward(ctx, grad_output):
        return grad_output


class ModuleWithGradFunc(torch.nn.Module):
    def __init__(self, func):
        super().__init__()
        self.f = func.apply

    def forward(self, x):
        return self.f(x)


class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
    # Sound behaviors, tested for working capture
    def test_autograd_function_equivalence(self):
        for grad in [True, False]:
            for i in range(1, 5):
                torch._dynamo.reset()
                model = globals()[f"Module{i}"]()
                opt_model = torch.compile(model, backend="eager")
                self.assertTrue(
                    torch.allclose(
                        opt_model(torch.ones(2, 3, requires_grad=grad)),
                        torch.tensor([2.0], requires_grad=grad),
                    )
                )

    def test_autograd_function_has_graph_break(self):
        for grad in [True, False]:
            x = torch.randn(10, requires_grad=grad)
            for model in [Module5(), Module6()]:
                torch._dynamo.reset()
                cnts = torch._dynamo.testing.CompileCounter()
                opt_model = torch.compile(model, backend=cnts)
                for _ in range(3):
                    ref = model(x)
                    res = opt_model(x)
                    self.assertTrue(torch.allclose(ref, res))
                self.assertEqual(cnts.frame_count, 2)

    def test_linear_setup_context(self):
        model = ModuleLinear()
        opt_model = torch.compile(model, backend="eager", fullgraph=True)
        input = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
        weight = torch.randn(3, 2, dtype=torch.double, requires_grad=True)
        eager_result = model(input, weight)
        optim_result = opt_model(input, weight)
        self.assertEqual(optim_result, eager_result)

    def test_materialize_grad(self):
        model = MaterializingGradModule()
        opt_model = torch.compile(model, backend="eager")
        x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
        optim_result = opt_model(x)
        eager_result = model(x)
        self.assertEqual(optim_result, eager_result)

    def test_print_in_bwd(self):
        model = CustomFuncBwdPrintModule()
        opt_model = torch.compile(model, backend="eager", fullgraph=True)
        x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
        with self.assertRaisesRegex(torch._dynamo.exc.Unsupported, "builtin: print"):
            opt_model(x)

    def test_stride_in_bwd(self):
        torch._dynamo.utils.counters.clear()
        cnt = torch._dynamo.testing.CompileCounter()
        model = CustomFuncStrideModule()
        opt_model = torch.compile(backend=cnt)(model)
        x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
        ref = model(x)
        res = opt_model(x)

        self.assertEqual(ref, res)
        self.assertEqual(cnt.frame_count, 1)
        # graph break: Illegal getattr invocation stride in strict mod.
        self.assertEqual(
            list(torch._dynamo.utils.counters["graph_break"].values()), [1]
        )

    def test_enum_arg(self):
        from enum import Enum

        class SomeEnum(Enum):
            A = 0
            B = 1

        class Foo(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, e):
                if e is SomeEnum.A:
                    return x.sin()
                else:
                    return x.cos()

            @staticmethod
            def backward(ctx, g):
                return g

        @torch.compile(backend="eager", fullgraph=True)
        def f(x, enum):
            output = Foo.apply(
                x,
                enum,
            )
            return output

        x = torch.tensor([[1.0, 2, 3], [4, 5, 6]], requires_grad=True)
        y = f(x, SomeEnum.A)
        self.assertEqual(y, x.sin())

    def test_save_for_bwd(self):
        model = SaveForBwdModule()
        opt_model = torch.compile(model, backend="eager", fullgraph=True)
        x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
        opt_model(x)

    def test_allow_in_graph(self):
        torch._dynamo.utils.counters.clear()
        cnt = torch._dynamo.testing.CompileCounter()

        @torch._dynamo.allow_in_graph
        class AllowInGraphFunc(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                torch._dynamo.graph_break()
                ctx.x0 = x.size(0)
                return x * 2

            @staticmethod
            def backward(ctx, grad_out):
                return grad_out * ctx.x0

        @torch.compile(backend=cnt, fullgraph=True)
        def fn(x):
            return AllowInGraphFunc.apply(x)

        x = torch.rand(2, 3, requires_grad=True)
        result = fn(x)

        self.assertEqual(result, AllowInGraphFunc.apply(x))
        self.assertEqual(cnt.frame_count, 1)

    def test_once_differentiable(self):
        from torch.autograd.function import once_differentiable

        torch._dynamo.utils.counters.clear()
        cnt = torch._dynamo.testing.CompileCounter()

        class ScaleGradient(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            @once_differentiable
            def backward(ctx, grad):
                return grad * 0.5

        @torch.compile(backend=cnt, fullgraph=True)
        def fn(x):
            return ScaleGradient.apply(x)

        x = torch.randn(3, requires_grad=True)
        result = fn(x)

        self.assertEqual(result, ScaleGradient.apply(x))
        self.assertEqual(cnt.frame_count, 1)

    def test_classmethod(self):
        class Shake(torch.autograd.Function):
            @classmethod
            def forward(cls, ctx, foo):
                return foo + foo

            @classmethod
            def backward(cls, ctx, grad_output):
                return grad_output

        def f(x):
            return Shake.apply(x)

        x = torch.randn(4, 4, 4, 4, requires_grad=True)
        opt_m = torch.compile(backend="eager")(f)
        opt_m(x)

    def test_function_context_save_and_mark(self):
        mod = ModuleWithGradFunc(ContextSaveAndMark)
        args, kwargs = ([torch.rand([1])], {})
        before = mod(*args, **kwargs)

        torch._dynamo.reset()
        compiled_model = torch.compile(mod, backend="eager")
        after = compiled_model(*args, **kwargs)
        self.assertEqual(before, after)

    def test_function_context_mark_and_save(self):
        mod = ModuleWithGradFunc(ContextMarkAndSave)
        args, kwargs = ([torch.rand([1])], {})
        before = mod(*args, **kwargs)

        torch._dynamo.reset()
        compiled_model = torch.compile(mod, backend="eager")
        after = compiled_model(*args, **kwargs)
        self.assertEqual(before, after)

    def test_multi_output(self):
        torch._dynamo.utils.counters.clear()
        cnt = torch._dynamo.testing.CompileCounter()

        class Foo(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                return x.clone(), x.clone()

            @staticmethod
            def backward(ctx, grad1, grad2):
                return grad1 + grad2

        @torch.compile(backend=cnt, fullgraph=True)
        def f(x):
            return Foo.apply(x)

        x = torch.randn(3, requires_grad=True)
        result = f(x)

        self.assertEqual(result, Foo.apply(x))
        self.assertEqual(cnt.frame_count, 1)

    def test_amp_custom_fwd_bwd(self):
        torch._dynamo.utils.counters.clear()
        cnt = torch._dynamo.testing.CompileCounter()

        class MyMM(torch.autograd.Function):
            @staticmethod
            @torch.amp.custom_fwd(device_type="cuda")
            def forward(ctx, a, b):
                ctx.save_for_backward(a, b)
                return a.mm(b)

            @staticmethod
            @torch.amp.custom_bwd(device_type="cuda")
            def backward(ctx, grad):
                a, b = ctx.saved_tensors
                return grad.mm(b.t()), a.t().mm(grad)

        @torch.compile(backend=cnt, fullgraph=True)
        def fn(a, b):
            return MyMM.apply(a, b)

        a = torch.randn([64, 64], dtype=torch.float32, requires_grad=True)
        grad = a.clone()
        res = fn(a, a)
        res.backward(grad)

        self.assertEqual(res, MyMM.apply(a, a))
        self.assertEqual(cnt.frame_count, 1)

    def test_set_materialize_grads_no_graph_break(self):
        class MulY(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                ctx.set_materialize_grads(True)
                return x * 3

            @staticmethod
            def backward(ctx, grad_out):
                return grad_out * 3

        @torch.compile(backend="eager", fullgraph=True)
        def f(x):
            return MulY.apply(x)

        x = torch.tensor(2.0, requires_grad=True)
        result = f(x)
        result.sum().backward()
        self.assertEqual(result, MulY.apply(x))
        self.assertEqual(x.grad, 3.0)

    def test_user_defined_object_as_input(self):
        cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")

        @dataclass
        class Weird:
            x: int
            b: torch.Tensor
            c: torch.Tensor

        class Foo(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x: torch.Tensor, weird: Weird, z: torch.Tensor):
                ctx.save_for_backward(weird.b, weird.c)
                return weird.b * weird.c * x.clone()

            @staticmethod
            def backward(ctx, grad):
                b, c = ctx.saved_tensors
                return grad * b * c, None, grad * 2

        @torch.compile(backend=cnt, fullgraph=True)
        def f(x, weird, z):
            return Foo.apply(x, weird, z)

        x = torch.tensor(2.0, requires_grad=True)
        weird = Weird(1.2, torch.tensor(2.5, requires_grad=True), torch.tensor(3.5))
        z = torch.tensor(3.0, requires_grad=True)

        result = f(x, weird, z)
        result.sum().backward()

        self.assertEqual(result, Foo.apply(x, weird, z))
        self.assertEqual(x.grad, 2.5 * 3.5)
        self.assertEqual(z.grad, 2.0)
        self.assertEqual(weird.b.grad, None)

        # check Dynamo captured graph is correct!
        actual_graph = torch._dynamo.testing.normalize_gm(
            cnt.graphs[0].print_readable(print_output=False)
        )
        self.assertExpectedInline(
            actual_graph,
            """\
class GraphModule(torch.nn.Module):
    def forward(self, L_x_: "f32[]", L_z_: "f32[]", L_weird_b: "f32[]", L_weird_c: "f32[]"):
        l_x_ = L_x_
        l_z_ = L_z_
        l_weird_b = L_weird_b
        l_weird_c = L_weird_c

        function_ctx = torch.autograd.function.FunctionCtx();  function_ctx = None
        fwd_body_0 = self.fwd_body_0
        bwd_body_0 = self.bwd_body_0
        autograd_function_apply: "f32[]" = torch.ops.higher_order.autograd_function_apply(fwd_body_0, bwd_body_0, l_x_, l_z_, l_weird_b, l_weird_c, args_tensor_mask = [True, False, True], non_differentiable_idx = []);  fwd_body_0 = bwd_body_0 = l_x_ = l_z_ = l_weird_b = l_weird_c = None
        return (autograd_function_apply,)

    class fwd_body_0(torch.nn.Module):
        def forward(self, ctx : torch.autograd.function.Function, x: "f32[]", z: "f32[]", l_weird_b: "f32[]", l_weird_c: "f32[]"):
            _set_grad_enabled = torch._C._set_grad_enabled(False);  _set_grad_enabled = None

            mul: "f32[]" = l_weird_b * l_weird_c
            clone: "f32[]" = x.clone();  x = None
            mul_1: "f32[]" = mul * clone;  mul = clone = None

            _set_grad_enabled_1 = torch._C._set_grad_enabled(True);  _set_grad_enabled_1 = None
            return (mul_1, [l_weird_b, l_weird_c])

    class bwd_body_0(torch.nn.Module):
        def forward(self, ctx : torch.autograd.function.Function, grad: "f32[]", l_weird_b: "f32[]", l_weird_c: "f32[]"):
            _set_grad_enabled = torch._C._set_grad_enabled(False);  _set_grad_enabled = None

            mul: "f32[]" = grad * l_weird_b;  l_weird_b = None
            mul_1: "f32[]" = mul * l_weird_c;  mul = l_weird_c = None
            mul_2: "f32[]" = grad * 2;  grad = None

            _set_grad_enabled_1 = torch._C._set_grad_enabled(True);  _set_grad_enabled_1 = None
            return (mul_1, mul_2)
""",
        )

    def test_tensor_list_as_input(self):
        class Foo(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, tl):
                ctx.save_for_backward(tl[0], tl[1])
                return x.clone() * (tl[0] + tl[1])

            @staticmethod
            def backward(ctx, grad):
                tl0, tl1 = ctx.saved_tensors
                return grad * (tl0 + tl1), None

        @torch.compile(backend="aot_eager", fullgraph=True)
        def f(x, tl):
            return Foo.apply(x, tl)

        x = torch.tensor(2.0, requires_grad=True)
        tl = [
            torch.tensor(3.0, requires_grad=True),
            torch.tensor(4.0, requires_grad=True),
        ]

        result = f(x, tl)
        result.sum().backward()

        self.assertEqual(result, Foo.apply(x, tl))
        self.assertEqual(x.grad, 7.0)
        self.assertEqual(tl[0].grad, None)
        self.assertEqual(tl[1].grad, None)

    def test_multiple_different_non_tensor_inputs(self):
        @dataclass
        class Weird:
            x: int
            b: torch.Tensor
            c: torch.Tensor

        class Foo(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, weird, z, tl):
                ctx.save_for_backward(weird.b, weird.c, tl[0], tl[1])
                return x.clone() * weird.b * weird.c * tl[0]

            @staticmethod
            def backward(ctx, grad):
                b, c, tl0, _ = ctx.saved_tensors
                return grad * b * c * tl0, None, grad * 2, None

        @torch.compile(backend="aot_eager", fullgraph=True)
        def f(x, weird, z, tl):
            return Foo.apply(x, weird, z, tl)

        x = torch.tensor(2.0, requires_grad=True)
        weird = Weird(
            1.2,
            torch.tensor(2.5, requires_grad=True),
            torch.tensor(3.5, requires_grad=True),
        )
        z = torch.tensor(3.0, requires_grad=True)
        tl = [
            torch.tensor(0.5, requires_grad=True),
            torch.tensor(0.6, requires_grad=True),
        ]

        result = f(x, weird, z, tl)
        result.sum().backward()

        self.assertEqual(result, Foo.apply(x, weird, z, tl))
        self.assertEqual(x.grad, 2.5 * 3.5 * 0.5)
        self.assertEqual(z.grad, 2.0)
        self.assertEqual(weird.b.grad, None)
        self.assertEqual(weird.c.grad, None)
        self.assertEqual(tl[0].grad, None)
        self.assertEqual(tl[1].grad, None)

    def test_backward_returns_none_for_tensor_input(self):
        class Foo(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, y):
                ctx.save_for_backward(y)
                return x.clone() * y

            @staticmethod
            def backward(ctx, grad):
                (y,) = ctx.saved_tensors
                return grad * y, None

        @torch.compile(backend="aot_eager", fullgraph=True)
        def f(x, y):
            return Foo.apply(x, y)

        x = torch.tensor(2.0, requires_grad=True)
        y = torch.tensor(3.0, requires_grad=True)

        result = f(x, y)
        result.sum().backward()

        self.assertEqual(result, Foo.apply(x, y))
        self.assertEqual(x.grad, 3.0)
        self.assertEqual(y.grad, None)

    def test_function_with_bound_free_variable(self):
        class LowerBound(torch.autograd.Function):
            @staticmethod
            def forward(ctx, inputs, bound):
                ctx.save_for_backward(inputs, inputs.new_ones(1) * bound)
                return inputs.clamp(min=bound)

            @staticmethod
            def backward(ctx, grad_output):
                inputs, bound = ctx.saved_tensors
                return (inputs >= bound) * grad_output, None

        class MyMod(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.gamma = torch.nn.Parameter(torch.rand([4, 128, 32, 32]))

            def forward(self, x):
                gamma = LowerBound.apply(self.gamma, 1)
                return x + gamma

        mod = MyMod()
        args, kwargs = ([torch.rand([4, 128, 32, 32])], {})
        before = mod(*args, **kwargs)

        compiled_model = torch.compile(mod, backend="eager")
        after = compiled_model(*args, **kwargs)
        self.assertEqual(before, after)

    # I pulled all of these test cases from test_autograd.py
    # In the future, we should make the Dynamo test suite actually
    # run on test_autograd.py (it's disabled right now) and delete these.
    def test_smoke_from_test_autograd(self):
        def mult1(x):
            return x.prod(dim=-1).prod(dim=-1)

        class Mult(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                y = mult1(x)
                ctx.save_for_backward(x, y)
                return y

            @staticmethod
            def backward(ctx, grad_output):
                x, y = ctx.saved_tensors
                return (grad_output * y)[:, None, None] / x

        mult2 = Mult.apply

        class Double(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                y = x**2
                ctx.save_for_backward(x, y)
                return y

            @staticmethod
            def backward(ctx, grad_output):
                x, _ = ctx.saved_tensors
                return grad_output * 2 * x

        # this is equivalent, but uses the output of .forward() in .backward()
        class Double2(Double):
            @staticmethod
            def backward(ctx, grad_output):
                x, y = ctx.saved_tensors
                return grad_output * 2 * y / x

        double = Double.apply
        double2 = Double2.apply

        class Identity(torch.autograd.Function):
            @staticmethod
            def forward(ctx, a, b):
                return a, a + b

            @staticmethod
            def backward(ctx, grad_a, grad_b):
                return grad_a + grad_b, grad_b

        class MyFunc2(torch.autograd.Function):
            @staticmethod
            def forward(ctx, inp):
                return inp.clone()

            @staticmethod
            def backward(ctx, gO):
                return torch.tensor(float("nan")).expand(10, 10)

        def run_fn(a):
            out = MyFunc2.apply(a)
            return out.sum()

        class MyFn(torch.autograd.Function):
            @staticmethod
            def forward(ctx, inp):
                return inp.view_as(inp)

            @staticmethod
            def backward(ctx, grad):
                return grad

        class MyAdder(torch.autograd.Function):
            @staticmethod
            def forward(ctx, a, b):
                a.add_(b)
                ctx.mark_dirty(a)
                return a

            @staticmethod
            def backward(ctx, grad):
                return grad, grad

        class InplaceMul(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                result = x.mul_(2)
                ctx.mark_dirty(result)
                return result

            @staticmethod
            def backward(ctx, grad_output):
                pass

            @staticmethod
            def jvp(ctx, x_t):
                if jvp_err:  # noqa: F821
                    return x_t
                else:
                    return x_t.mul_(2)

        class MyFn2(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, y):
                return x + y, x

            @staticmethod
            def vjp(ctx, gO1, gO2):
                return gO1 + gO2, gO1

            @staticmethod
            def jvp(ctx, x_t, y_t):
                return x_t + y_t, fn(x_t)  # noqa: F821

        class MyFn3(torch.autograd.Function):
            @staticmethod
            def forward(ctx, inp, inplace):
                view = inp.clone()[:3]
                if inplace:
                    view += 2
                return view

            @staticmethod
            def backward(ctx, grad):
                return grad, None

        def test():
            x = torch.ones(2, 4, 4).requires_grad_()
            mult2(x)

            x = torch.tensor(2).double().requires_grad_()
            double(x)
            double2(x)

            x = torch.randn(5, 5, requires_grad=True)
            y = torch.randn(5, 5, requires_grad=True)
            q, p = Identity.apply(x, y)

            a = torch.rand(1, 2)
            b = torch.rand(1, requires_grad=True)
            view_a = MyFn.apply(a)

            a = torch.ones(2, requires_grad=True)
            b = torch.ones(2, requires_grad=True)
            c = MyAdder.apply(a.clone(), b)
            c.sum().backward()

            z = torch.tensor(1.0, requires_grad=True)
            x = z.clone()
            y = InplaceMul.apply(x)

            a = torch.tensor(1.0, dtype=torch.double, requires_grad=True)
            b = torch.tensor(1.0, dtype=torch.double, requires_grad=True)
            c = torch.tensor(1.0, dtype=torch.double)
            d = torch.tensor(1.0, dtype=torch.double)
            MyFn2.apply(a, b)
            MyFn2.apply(c, d)

            base = torch.rand(10, requires_grad=True)
            foo = MyFn3.apply(base, False)

        test()
        opt_test = torch.compile(test, backend="eager")
        opt_test()

    def test_tensor_subclass_intermediary_input(self):
        class FooTensor(torch.Tensor):
            @staticmethod
            def __new__(cls, data, config, scale):
                self = torch.Tensor._make_wrapper_subclass(
                    cls,
                    config[0],
                    strides=config[1],
                    storage_offset=config[2],
                    dtype=config[3],
                    layout=config[4],
                    requires_grad=config[5],
                    device=data.device,
                )
                self._data = data
                self._config = config
                self._scale = scale
                return self

            def __repr__(self):
                return "FooTensor"

            def __tensor_flatten__(self):
                return ("_data",), (
                    self._config,
                    self._scale,
                )

            @staticmethod
            def __tensor_unflatten__(tensors, metadatas, outer_size, outer_stride):
                return FooTensor(tensors["_data"], metadatas[0], metadatas[1])

            @classmethod
            def __torch_dispatch__(cls, func, types, args, kwargs=None):
                # handling clone and view is so dynamo fakefication passes, it's not
                # intended to be handling user code
                if func == torch.ops.aten.clone.default:
                    return FooTensor(
                        args[0]._data.clone(), args[0]._config, args[0]._scale
                    )
                elif func == torch.ops.aten.view.default:
                    new_data = args[0]._data.view(*args[1:])
                    return FooTensor(new_data, args[0]._config, args[0]._scale)

                raise NotImplementedError

        class foo_autograd_fn(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                # access some data from `x`, where `x` is a tensor subclass
                x2 = x._data + 1.0
                # create and return a tensor subclass from within a torch.autograd.Function
                x3 = FooTensor(x2, x._config, x._scale)
                return x3._data

            @staticmethod
            def backward(ctx, g):
                return g

        x_ref = torch.randn(4, 4).requires_grad_(True)
        x = copy.deepcopy(x_ref)
        scale = torch.tensor(1.0)
        # Weird that this is needed, but not having this breaks a lot of things
        torch._dynamo.allow_in_graph(FooTensor)

        def foo(x, scale):
            config = (
                x.size(),
                x.stride(),
                x.storage_offset(),
                x.dtype,
                x.layout,
                x.requires_grad,
            )
            x = FooTensor(x, config, scale)
            x = foo_autograd_fn.apply(x)
            return x

        y_ref = foo(x_ref, scale)
        y_ref.sum().backward()

        foo_opt = torch.compile(foo, backend="eager")
        y = foo_opt(x, scale)
        y.sum().backward()

        self.assertEqual(y, y_ref)
        self.assertEqual(x.grad, x_ref.grad)

    def test_smuggle_symint_issue_111031(self):
        from torch.autograd import Function

        class Foo(Function):
            @staticmethod
            def forward(ctx, x):
                ctx.x0 = x.size(0)
                return x * 2

            @staticmethod
            def backward(ctx, grad_out):
                return grad_out * ctx.x0

        cnts = torch._dynamo.testing.CompileCounter()

        @torch.compile(backend=cnts, fullgraph=True, dynamic=True)
        def foo(x):
            return Foo.apply(x)

        foo(torch.randn(2, requires_grad=True))
        self.assertEqual(cnts.frame_count, 1)

    def test_needs_input_grad(self):
        cnt = torch._dynamo.testing.CompileCounter()

        class NeedsInputGradFunc(torch.autograd.Function):
            @staticmethod
            def forward(ctx, foo):
                result = foo + foo
                ctx.save_for_backward(result)
                return result

            @staticmethod
            @torch.compile(backend=cnt, fullgraph=True)
            def backward(ctx, grad_output):
                (result,) = ctx.saved_tensors
                if ctx.needs_input_grad[0]:
                    return grad_output * result.sin()
                return None

        x = torch.randn(10, requires_grad=True)
        NeedsInputGradFunc.apply(x).sum().backward()
        self.assertEqual(x.grad.shape, x.shape)
        self.assertEqual(cnt.frame_count, 1)
        self.assertEqual(cnt.op_count, 2)

    def test_repeated_save_for_backward_calls(self):
        from torch.autograd import Function

        class Foo(Function):
            @staticmethod
            def forward(ctx, x, y):
                ctx.save_for_backward(x)
                ctx.save_for_backward(x, y)
                return x * y

            @staticmethod
            def backward(ctx, grad_out):
                x, y = ctx.saved_tensors
                return grad_out * x, grad_out * y

        cnts = torch._dynamo.testing.CompileCounter()

        def foo(x, y):
            return Foo.apply(x, y)

        x_ref = torch.randn(2, requires_grad=True)
        y_ref = torch.randn(2, requires_grad=True)
        x_test = x_ref.detach().clone().requires_grad_()
        y_test = y_ref.detach().clone().requires_grad_()

        out_ref = foo(x_ref, y_ref)
        out_ref.sum().backward()

        out_test = torch.compile(foo, backend=cnts)(x_test, y_test)
        out_test.sum().backward()

        self.assertEqual(cnts.frame_count, 1)
        self.assertEqual(out_ref, out_test)
        self.assertEqual(x_ref.grad, x_test.grad)
        self.assertEqual(y_ref.grad, y_test.grad)

    def test_smuggle_tensor_and_complex_structures(self):
        from torch.autograd import Function

        class Foo(Function):
            @staticmethod
            def forward(ctx, x):
                ctx.x0 = x
                ctx.x1 = [1, 2, 3]
                return x * 2

            @staticmethod
            def backward(ctx, grad_out):
                x0mul = grad_out * ctx.x0
                for i in ctx.x1:
                    x0mul = (x0mul * i) + x0mul
                return x0mul

        cnts = torch._dynamo.testing.CompileCounter()

        @torch.compile(backend=cnts, fullgraph=True, dynamic=True)
        def foo(x):
            return Foo.apply(x)

        foo(torch.randn(2, requires_grad=True))
        self.assertEqual(cnts.frame_count, 1)

    def test_mark_non_differentiable(self):
        cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
        from torch.autograd import Function

        class MyFunction(Function):
            @staticmethod
            def forward(ctx, x, y):
                out1 = x.sin()
                out2 = y * 2
                ctx.mark_non_differentiable(out2)
                return out1, out2

            @staticmethod
            def backward(ctx, grad1, grad2):
                return grad1.cos(), grad2 * 0.0

        @torch.compile(backend=cnt, fullgraph=True)
        def fn(x, y):
            return MyFunction.apply(x, y)

        x = torch.tensor(10.0, requires_grad=True)
        y = torch.tensor(20.0, requires_grad=True)
        ref1, ref2 = MyFunction.apply(x, y)
        res1, res2 = fn(x, y)
        self.assertEqual(ref1, res1)
        self.assertEqual(ref2, res2)
        # Ensure out1 requires gradients, out2 does not.
        self.assertTrue(ref1.requires_grad)
        self.assertTrue(res1.requires_grad)
        self.assertFalse(ref2.requires_grad)
        self.assertFalse(res2.requires_grad)
        res1.sum().backward()

        # check Dynamo captured graph is correct!
        actual_graph = torch._dynamo.testing.normalize_gm(
            cnt.graphs[0].print_readable(print_output=False)
        )
        self.assertExpectedInline(
            actual_graph,
            """\
class GraphModule(torch.nn.Module):
    def forward(self, L_x_: "f32[]", L_y_: "f32[]"):
        l_x_ = L_x_
        l_y_ = L_y_

        function_ctx = torch.autograd.function.FunctionCtx();  function_ctx = None
        fwd_body_0 = self.fwd_body_0
        bwd_body_0 = self.bwd_body_0
        autograd_function_apply = torch.ops.higher_order.autograd_function_apply(fwd_body_0, bwd_body_0, l_x_, l_y_, args_tensor_mask = [True, True], non_differentiable_idx = [1]);  fwd_body_0 = bwd_body_0 = l_x_ = l_y_ = None
        getitem: "f32[]" = autograd_function_apply[0]
        getitem_1: "f32[]" = autograd_function_apply[1];  autograd_function_apply = None
        return (getitem, getitem_1)

    class fwd_body_0(torch.nn.Module):
        def forward(self, ctx : torch.autograd.function.Function, x: "f32[]", y: "f32[]"):
            _set_grad_enabled = torch._C._set_grad_enabled(False);  _set_grad_enabled = None

            out1: "f32[]" = x.sin();  x = None

            out2: "f32[]" = y * 2;  y = None

            _set_grad_enabled_1 = torch._C._set_grad_enabled(True);  _set_grad_enabled_1 = None
            return ((out1, out2), [])

    class bwd_body_0(torch.nn.Module):
        def forward(self, ctx : torch.autograd.function.Function, grad1: "f32[]", grad2: "f32[]"):
            _set_grad_enabled = torch._C._set_grad_enabled(False);  _set_grad_enabled = None

            cos: "f32[]" = grad1.cos();  grad1 = None
            mul: "f32[]" = grad2 * 0.0;  grad2 = None

            _set_grad_enabled_1 = torch._C._set_grad_enabled(True);  _set_grad_enabled_1 = None
            return (cos, mul)
""",
        )

    def test_mark_multi_output_non_differentiable(self):
        from torch.autograd import Function

        class MyFunction(Function):
            @staticmethod
            def forward(ctx, x, y, z):
                out1 = x.sin()
                out2 = y * 2
                out3 = z + 3
                ctx.mark_non_differentiable(out2, out3)
                return out1, out2, out3

            @staticmethod
            def backward(ctx, grad1, grad2, grad3):
                return grad1.cos(), grad2, grad3

        @torch.compile(backend="aot_eager", fullgraph=True)
        def fn(x, y, z):
            return MyFunction.apply(x, y, z)

        x = torch.tensor(10.0, requires_grad=True)
        y = torch.tensor(20.0, requires_grad=True)
        z = torch.tensor(30.0, requires_grad=True)
        ref1, ref2, ref3 = MyFunction.apply(x, y, z)
        res1, res2, res3 = fn(x, y, z)
        self.assertEqual(ref1, res1)
        self.assertEqual(ref2, res2)
        self.assertEqual(ref3, res3)
        # Ensure out1 requires gradients, out2 does not.
        self.assertTrue(ref1.requires_grad)
        self.assertTrue(res1.requires_grad)
        self.assertFalse(ref2.requires_grad)
        self.assertFalse(res2.requires_grad)
        self.assertFalse(ref3.requires_grad)
        self.assertFalse(res3.requires_grad)
        res1.sum().backward()

    def test_default_values(self):
        from torch.autograd import Function

        class Foo(Function):
            @staticmethod
            def forward(ctx, x, alpha=0.99):
                return x

            @staticmethod
            def backward(ctx, grad_out):
                return grad_out

        @torch.compile
        def foo(x):
            return Foo.apply(x)

        # Make sure guards for default values do not crash
        foo(torch.randn(2))
        foo(torch.randn(2, requires_grad=True))

    def test_fwd_no_grad(self):
        # autograd.Function.forward should be traced and called under no_grad mode.
        # torch.exp with out=... arguments don't support automatic differentiation,
        # so can't be traced/called under grad mode (throwing RuntimeError),
        # therefore this unit test ensures fwd is under no_grad mode.
        class Foo(torch.autograd.Function):
            @staticmethod
            def forward(ctx, inputs):
                torch.exp(inputs, out=inputs)
                return inputs

            @staticmethod
            def backward(ctx, grad_output):
                return None

        @torch.compile(backend="eager", fullgraph=True)
        def f(x):
            return Foo.apply(x)

        x1 = torch.randn(2, 3, requires_grad=True)
        x2 = x1.clone()
        self.assertEqual(f(x1), Foo.apply(x2))

    # https://github.com/pytorch/pytorch/issues/129963
    def test_fwd_propogation_correctness(self):
        class MyCube(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                result = x**3
                dx = 3 * x**2
                ctx.save_for_backward(x, dx)
                return result, dx

            @staticmethod
            def backward(ctx, grad_output, grad_dx):
                x, dx = ctx.saved_tensors
                result = grad_output * dx + grad_dx * 6 * x
                # Intentionally return a wrong value to test if the backward is triggered twice.
                # Since if the first MyCube.apply returns values w/o requires_grad=True,
                # this backward would be only triggered once (the first MyCube.appy call),
                # as the second MyCube.apply is inlined by Dynamo and the corresponding backward
                # would be generated by autograd engine.
                return result * 0.5

        @torch.compile(backend="eager", fullgraph=True)
        def fn(x):
            x, _ = MyCube.apply(x)
            x, _ = MyCube.apply(x)
            return x

        inp = torch.ones(2, requires_grad=True)
        out = fn(inp)
        out.sum().backward()
        self.assertEqual(out, inp**3)
        self.assertEqual(inp.grad, torch.tensor([2.25, 2.25]))

    def test_tuple_arg(self):
        cnt = torch._dynamo.testing.CompileCounter()

        class TupleArgFunc(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, shape):
                ctx.save_for_backward(torch.randn(shape))
                return x + 1

            @staticmethod
            def backward(ctx, grad_output):
                (result,) = ctx.saved_tensors
                return result, None

        @torch.compile(backend=cnt, fullgraph=True)
        def fn():
            return TupleArgFunc.apply(x, shape)

        shape = (10, 10)
        x = torch.randn(shape, requires_grad=True)
        out = fn()
        out.sum().backward()
        self.assertEqual(out, x + 1)
        self.assertEqual(x.grad.shape, shape)
        self.assertEqual(cnt.frame_count, 1)
        self.assertEqual(cnt.op_count, 2)

    @requires_cuda
    def test_triton_kernel_basic(self):
        class Add(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, y):
                ctx.save_for_backward(x, y)
                output = torch.zeros_like(x)
                n_elements = output.numel()
                grid = lambda meta: (  # noqa: E731
                    triton.cdiv(n_elements, meta["BLOCK_SIZE"]),
                )
                add_kernel[grid](x, y, output, n_elements, BLOCK_SIZE=16)
                return output

            @staticmethod
            def backward(ctx, grad_output):
                x, y = ctx.saved_tensors
                return x * grad_output, y * grad_output

        @torch.compile(fullgraph=True, backend="inductor")
        def f(x, y):
            z = Add.apply(x, y)
            return z

        x = torch.randn(10, device="cuda", requires_grad=True)
        y = torch.randn(10, device="cuda", requires_grad=True)
        z = f(x, y)
        loss = z.sum()
        loss.backward()
        self.assertEqual(x + y, z)

    @requires_cuda
    def test_triton_kernel_multiple_out(self):
        class Add(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, y):
                ctx.save_for_backward(x, y)
                ctx.t1 = x
                ctx.t2 = y
                output = torch.zeros_like(x)
                n_elements = output.numel()
                grid = lambda meta: (  # noqa: E731
                    triton.cdiv(n_elements, meta["BLOCK_SIZE"]),
                )
                add_kernel[grid](x, y, output, n_elements, BLOCK_SIZE=16)
                return output, x

            @staticmethod
            def backward(ctx, grad_output, old_x):
                x, y = ctx.saved_tensors
                x1 = ctx.t1
                y1 = ctx.t2
                return old_x * x * x1 * grad_output, y * y1 * grad_output

        @torch.compile(fullgraph=True, backend="inductor")
        def f(x, y):
            z = Add.apply(x, y)
            return z

        x = torch.randn(10, device="cuda", requires_grad=True)
        y = torch.randn(10, device="cuda", requires_grad=True)
        z, _ = f(x, y)
        loss = z.sum()
        loss.backward()
        self.assertEqual(x + y, z)


if __name__ == "__main__":
    from torch._dynamo.test_case import run_tests

    run_tests()