1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
# Owner(s): ["module: dynamo"]
import sys
import unittest
from unittest.mock import MagicMock, patch
import torch
import torch._dynamo
import torch._dynamo.backends
import torch._dynamo.test_case
from torch._dynamo.backends.debugging import ExplainWithBackend
from torch._dynamo.backends.onnxrt import has_onnxruntime
from torch._dynamo.backends.tvm import has_tvm
from torch._dynamo.testing import same
from torch.fx._lazy_graph_module import _force_skip_lazy_graph_module
from torch.testing._internal.inductor_utils import HAS_CUDA
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
class Seq(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.layers = torch.nn.Sequential(
torch.nn.Linear(10, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 10),
torch.nn.Sigmoid(),
)
def forward(self, x):
return self.layers(x)
class Conv_Bn_Relu(torch.nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super().__init__()
self.conv = torch.nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = torch.nn.BatchNorm2d(out_channels, eps=0.001)
self.relu = torch.nn.ReLU()
def forward(self, x):
return self.relu(self.bn(self.conv(x)))
class TestOptimizations(torch._dynamo.test_case.TestCase):
def test_example_inputs(self):
def fn(a, bc, d):
b, c = bc
return a / d - b / c
def compiler_fn(graph, example_inputs):
nonlocal r1
r1 = graph(*example_inputs)[0]
return graph.forward
a = torch.empty(2).fill_(1)
b = torch.empty(2).fill_(2)
c = torch.empty(2).fill_(3)
d = 4
r1 = None
r2 = fn(a, (b, c), d)
opt_fn = torch._dynamo.optimize_assert(compiler_fn)(fn)
r3 = opt_fn(a, (b, c), d)
self.assertIsNotNone(r1)
self.assertEqual(r1.size(), r2.size())
self.assertEqual(r1.stride(), r2.stride())
self.assertEqual(r1.dtype, r2.dtype)
self.assertEqual(r1.size(), r3.size())
self.assertEqual(r1.stride(), r3.stride())
self.assertEqual(r1.dtype, r3.dtype)
def test_example_inputs_runtime_use(self):
def fn(a, bc, d):
b, c = bc
return a / d - b / c
def compiler_fn(graph, example_inputs):
def fwd(*args):
nonlocal r1
r = graph.forward(*args)
r1 = r[0]
return r
return fwd
a = torch.empty(2).fill_(1)
b = torch.empty(2).fill_(2)
c = torch.empty(2).fill_(3)
d = 4
r1 = None
r2 = fn(a, (b, c), d)
opt_fn = torch._dynamo.optimize_assert(compiler_fn)(fn)
r3 = opt_fn(a, (b, c), d)
self.assertIsNotNone(r1)
self.assertTrue(same(r1, r2))
self.assertTrue(same(r1, r3))
def _check_backend_works(self, backend, options=None):
model = Seq().eval()
input = torch.randn(2, 10)
r1 = model(input)
r2 = torch.compile(model, backend=backend, options=options)(input)
self.assertTrue(same(r1, r2.float(), tol=0.01))
def test_eager(self):
self._check_backend_works("eager")
def test_eager_noexcept(self):
self._check_backend_works("eager_noexcept")
@_force_skip_lazy_graph_module()
def test_torchscript(self):
self._check_backend_works("ts")
def test_aot_eager(self):
self._check_backend_works("aot_eager")
def test_aot_eager_decomp_partition(self):
self._check_backend_works("aot_eager_decomp_partition")
@_force_skip_lazy_graph_module()
def test_aot_ts(self):
self._check_backend_works("aot_ts")
@requires_cuda
def test_aot_cudagraphs(self):
self._check_backend_works("cudagraphs")
@unittest.skipIf(not has_onnxruntime(), "requires onnxruntime")
def test_onnxrt(self):
self._check_backend_works("onnxrt")
@unittest.skipIf(not has_tvm(), "requires tvm")
def test_tvm(self):
self._check_backend_works("tvm")
self._check_backend_works("tvm", options={"scheduler": None})
self._check_backend_works("tvm", options={"opt_level": 0})
def test_list_backends(self):
self.assertIn("inductor", torch._dynamo.list_backends())
self.assertIn("inductor", torch._dynamo.list_backends(exclude_tags=None))
self.assertNotIn("eager", torch._dynamo.list_backends())
self.assertNotIn("eager", torch._dynamo.list_backends(exclude_tags=["debug"]))
self.assertIn("eager", torch._dynamo.list_backends(exclude_tags=[]))
class NormalizeIRTests(torch._dynamo.test_case.TestCase):
def test_inplace_normalize(self):
def fn(a, b):
x = torch.cos(a)
x += b
return torch.sin(x)
a = torch.randn(10)
b = torch.randn(10).to(torch.float64)
ref = fn(a, b)
optimized_fn = torch.compile(fn, backend="aot_eager")
res = optimized_fn(a, b)
self.assertTrue(same(ref, res))
class MPSNotSupportedTest(torch._dynamo.test_case.TestCase):
@unittest.skipIf(not torch.backends.mps.is_available(), "requires mps")
def test_mps_not_supported(self):
model = Seq().to("mps")
example_input = torch.randn(1, 10).to("mps")
self.assertRaises(
RuntimeError,
lambda: torch.compile(model, backend="inductor")(example_input),
)
class TestExplainWithBackend(torch._dynamo.test_case.TestCase):
def test_explain_with_backend(self):
def fn3(x):
x = torch.sin(x)
torch._dynamo.graph_break()
x = torch.sin(x)
return x
def fn2(x):
x = torch.cos(x)
x = fn3(x)
x = torch.cos(x)
return x
def fn1(x):
x = torch.tan(x)
x = fn2(x)
x = torch.tan(x)
return x
def fn(x):
x = torch.sigmoid(x)
x = fn1(x)
x = torch.sigmoid(x)
return x
# Wrap TorchInductor with explain backend
eb = ExplainWithBackend("inductor")
optimized_fn = torch.compile(fn, backend=eb)
input_tensor = torch.randn(5)
result = optimized_fn(input_tensor)
# Check that fn still produces the same output when wrapped by ExplainWithBackend
self.assertTrue(torch.allclose(result, fn(input_tensor)))
# Verify ExplainOutput object contents, output might change but make sure these fields are present
explain_output = eb.output()
explain_str = str(explain_output)
self.assertIn("Graph Count", explain_str)
self.assertIn("Graph Break Count", explain_str)
self.assertIn("Op Count", explain_str)
self.assertIn("Break Reasons", explain_str)
# Verify that for the given functions above, we report the correct number of graphs, graph breaks, and ops
self.assertEqual(8, explain_output.graph_count)
self.assertEqual(7, explain_output.graph_break_count)
self.assertEqual(8, explain_output.op_count)
class TestCustomBackendAPI(torch._dynamo.test_case.TestCase):
"""Test APIs documented by https://pytorch.org/docs/main/torch.compiler_custom_backends.html"""
def test_register_backend_api(self):
from torch._dynamo import register_backend
backend_run = False
@register_backend
def my_custom_backend(gm, example_inputs):
nonlocal backend_run
backend_run = True
return gm.forward
def f(x):
return torch.relu(x)
opt_f = torch.compile(f, backend="my_custom_backend")
opt_f(torch.randn(3, 3))
self.assertTrue(backend_run)
def test_aot_autograd_api(self):
from functorch.compile import make_boxed_func
from torch._dynamo.backends.common import aot_autograd
backend_run = False
def my_compiler(gm, example_inputs):
nonlocal backend_run
backend_run = True
return make_boxed_func(gm.forward)
my_backend = aot_autograd(fw_compiler=my_compiler)
def f(x):
return torch.relu(x)
opt_f = torch.compile(f, backend=my_backend)
opt_f(torch.randn(3, 3))
self.assertTrue(backend_run)
def test_lookup_backend(self):
from torch._dynamo import list_backends, lookup_backend
backends = list_backends()
backend_run = False
def my_compiler(gm, example_inputs):
nonlocal backend_run
backend_run = True
try:
trt_compiled = lookup_backend("tensorrt")(gm, example_inputs)
if trt_compiled is not None:
return trt_compiled
except Exception:
pass
# first backend failed, try something else...
try:
inductor_compiled = lookup_backend("inductor")(gm, example_inputs)
if inductor_compiled is not None:
return inductor_compiled
except Exception:
pass
return gm.forward
def f(x):
return torch.relu(x)
opt_f = torch.compile(f, backend=my_compiler)
opt_f(torch.randn(3, 3))
self.assertTrue(backend_run)
def test_lookup_custom_backend(self):
from torch._dynamo import list_backends
backends_group = "torch_dynamo_backends"
name = "mycustombackend"
mock_3_9 = MagicMock()
mock_3_9.load.return_value = lambda: "mocked 3.9"
mock_3_9.name = name
mock_3_10 = MagicMock()
mock_3_10.load.return_value = lambda: "mocked 3.10"
def mock_eps(group=None):
if sys.version_info < (3, 10):
return {backends_group: [mock_3_9]}
else:
assert group == backends_group, group
mock_group = MagicMock()
mock_group.names = [name]
mock_group[name] = mock_3_10
# mock_group[name].load.return_value = lambda: "mocked 3.10"
return mock_group
with patch("importlib.metadata.entry_points", mock_eps):
from torch._dynamo.backends import registry
registry._lazy_import.cache_clear()
registry._discover_entrypoint_backends.cache_clear()
backends = list_backends()
assert name in backends, (name, backends)
def test_backend_recompilation(self):
def fn(x):
return x + x
input = torch.tensor(2.0)
opt_fn = torch.compile(
fn, backend="inductor", options={"_raise_error_for_testing": False}
)
opt_fn(input)
with self.assertRaises(torch._dynamo.exc.BackendCompilerFailed):
opt_fn = torch.compile(
fn, backend="inductor", options={"_raise_error_for_testing": True}
)
opt_fn(input)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|