1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
# Owner(s): ["module: dynamo"]
# flake8: noqa
import functools
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch import _inductor as inductor
from torch._dynamo import compiled_autograd
from torch._dynamo._trace_wrapped_higher_order_op import trace_wrapped
from torch._dynamo.testing import normalize_gm
from torch._dynamo.utils import counters
from torch.fx.experimental.proxy_tensor import make_fx
def _multiply(x):
return x * x
def _multiply_invoke(grad):
return trace_wrapped(grad, fn=_multiply)
class BackwardHigherOrderOpTests(torch._dynamo.test_case.TestCase):
def test_invoke_in_eager(self):
x = torch.tensor([0.5, 0.5], requires_grad=True)
y = torch.tensor([0.5, 0.5], requires_grad=True)
def fn(x, y):
x.register_hook(_multiply_invoke)
return x * y
out = fn(x, y)
grad_out = torch.tensor([2.0, 2.0])
out.backward(grad_out)
self.assertEqual(x.grad, y * grad_out)
def test_invoke_in_pt2(self):
for backend in ["eager", "aot_eager", "inductor"]:
torch._dynamo.reset()
x = torch.tensor([0.5, 0.5], requires_grad=True)
y = torch.tensor([0.5, 0.5], requires_grad=True)
def fn(x, y):
x.register_hook(_multiply_invoke)
return x * y
fn = torch.compile(fn, backend=backend)
out = fn(x, y)
grad_out = torch.tensor([2.0, 2.0])
out.backward(grad_out)
self.assertEqual(x.grad, grad_out * y)
def test_invoke_make_fx_forward_contrived(self):
x = torch.tensor([0.5, 0.5], requires_grad=True)
out = make_fx(_multiply_invoke)(x)
self.assertEqual(out(x), torch.tensor([0.25, 0.25]))
actual = normalize_gm(out.print_readable(False))
self.assertExpectedInline(
actual,
"""\
class _multiply_invoke(torch.nn.Module):
def forward(self, grad_1: "f32[2]"):
trace_wrapped: "f32[2]" = torch__dynamo__trace_wrapped_higher_order_op_self_invoke(grad_1); grad_1 = None
return trace_wrapped
""",
)
def test_invoke_make_bw(self):
x = torch.tensor([0.5, 0.5], requires_grad=True)
def fwd(x):
z = x * x
return z + z
res = fwd(x)
res.backward(torch.tensor([1.0, 1.0]))
out = make_fx(_multiply_invoke)(x.grad)
self.assertEqual(out(x.grad), torch.tensor([4.0, 4.0]))
actual = normalize_gm(out.print_readable(False))
self.assertExpectedInline(
actual,
"""\
class _multiply_invoke(torch.nn.Module):
def forward(self, grad_1: "f32[2]"):
trace_wrapped: "f32[2]" = torch__dynamo__trace_wrapped_higher_order_op_self_invoke(grad_1); grad_1 = None
return trace_wrapped
""",
)
def test_invoke_in_pt2_compiled_autograd(self):
graph = None
def compiler_fn(gm):
def inner_compiler(gm_, example_inputs_):
nonlocal graph
self.assertEqual(graph, None)
graph = gm_
return inductor.compile(gm_, example_inputs_)
return torch.compile(
gm, backend=inner_compiler, fullgraph=True, dynamic=True
)
for backend in ["eager", "aot_eager", "inductor"]:
torch._dynamo.reset()
x = torch.tensor([0.5, 0.5], requires_grad=True)
y = torch.tensor([0.5, 0.5], requires_grad=True)
def fn(x, y):
x.register_hook(_multiply_invoke)
return x + y
fn = torch.compile(fn, backend=backend)
out = fn(x, y)
grad_out = torch.tensor([2.0, 2.0])
with compiled_autograd._enable(compiler_fn):
out.backward(grad_out)
actual = normalize_gm(graph.print_readable(False))
self.assertEqual(x.grad, grad_out * grad_out)
self.assertExpectedInline(
actual,
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_inputs_ : list):
l_inputs_ = L_inputs_
getitem: "f32[s0]" = l_inputs_[0]; l_inputs_ = None
new_grad: "f32[s0]" = torch.clone(getitem)
result: "f32[s0]" = getitem * getitem; getitem = None
new_grad_1: "f32[s0]" = torch.clone(result); result = None
return (new_grad, new_grad_1)
""",
)
graph = None
def test_invoke_in_pt2_compiled_autograd_side_effect(self):
def _side_effect_stateful_fn2(x, obj):
obj.counter = obj.counter + 1
return _multiply(x)
def _side_effectful_invoke2(grad, fn):
return trace_wrapped(grad, fn=fn)
graph = None
def compiler_fn(gm):
def inner_compiler(gm_, example_inputs_):
nonlocal graph
self.assertEqual(graph, None)
graph = gm_
return inductor.compile(gm_, example_inputs_)
return torch.compile(
gm, backend=inner_compiler, fullgraph=True, dynamic=True
)
for backend in ["eager", "aot_eager", "inductor"]:
torch._dynamo.reset()
x = torch.tensor([0.5, 0.5], requires_grad=True)
y = torch.tensor([0.5, 0.5], requires_grad=True)
class MyObj:
def __init__(self) -> None:
self.counter = 0
obj = MyObj()
inner_fn = functools.partial(_side_effect_stateful_fn2, obj=obj)
hook_fn = functools.partial(_side_effectful_invoke2, fn=inner_fn)
x.register_hook(hook_fn)
def fn(x, y):
return x + y
fn = torch.compile(fn, backend=backend, fullgraph=True)
out = fn(x, y)
grad_out = torch.tensor([2.0, 2.0])
with compiled_autograd._enable(compiler_fn):
out.backward(grad_out)
actual = normalize_gm(graph.print_readable(False))
self.assertEqual(obj.counter, 1)
self.assertEqual(x.grad, grad_out + grad_out)
self.assertExpectedInline(
actual,
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_inputs_ : list, L_hooks_0_keywords_fn_keywords_obj_counter: "Sym(s1)"):
l_inputs_ = L_inputs_
l_hooks_0_keywords_fn_keywords_obj_counter = L_hooks_0_keywords_fn_keywords_obj_counter
getitem: "f32[s0]" = l_inputs_[0]; l_inputs_ = None
new_grad: "f32[s0]" = torch.clone(getitem)
add: "Sym(s1 + 1)" = l_hooks_0_keywords_fn_keywords_obj_counter + 1; l_hooks_0_keywords_fn_keywords_obj_counter = None
result: "f32[s0]" = getitem * getitem; getitem = None
new_grad_1: "f32[s0]" = torch.clone(result); result = None
return (new_grad, new_grad_1, add)
""",
)
out = fn(x, y)
out.backward(grad_out)
self.assertEqual(obj.counter, 2)
out = fn(x, y)
out.backward(grad_out)
self.assertEqual(obj.counter, 3)
graph = None
def test_invoke_in_pt2_compiled_autograd_graph_breaks(self):
def _graph_breaking_fn(x):
print("Boo!")
return _multiply(x)
def _graph_break_invoke(grad):
return trace_wrapped(grad, fn=_graph_breaking_fn)
def compiler_fn(gm):
return torch.compile(gm, backend="inductor", fullgraph=True, dynamic=True)
for backend in ["eager", "aot_eager", "inductor"]:
torch._dynamo.reset()
x = torch.tensor([0.5, 0.5], requires_grad=True)
y = torch.tensor([0.5, 0.5], requires_grad=True)
def fn(x, y):
x.register_hook(_graph_break_invoke)
return x + y
fn = torch.compile(fn, backend=backend, fullgraph=True)
out = fn(x, y)
grad_out = torch.tensor([2.0, 2.0])
with self.assertRaisesRegex(
torch._dynamo.exc.Unsupported,
"print",
):
with compiled_autograd._enable(compiler_fn):
out.backward(grad_out)
graph = None
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|