File: test_compiler_bisector.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (251 lines) | stat: -rw-r--r-- 8,236 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Owner(s): ["module: dynamo"]

import unittest
from contextlib import contextmanager
from importlib import import_module

import torch
import torch._prims_common as utils
from torch._dynamo.utils import preserve_rng_state
from torch._inductor import config
from torch._inductor.compiler_bisector import CompilerBisector
from torch._inductor.test_case import TestCase
from torch.library import _scoped_library, Library
from torch.testing._internal.inductor_utils import HAS_CUDA


aten = torch.ops.aten

requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")

f32 = torch.float32
i64 = torch.int64
i32 = torch.int32


@requires_cuda
class TestCompilerBisector(TestCase):
    test_ns = "_test_bisector"

    def tearDown(self):
        if hasattr(torch.ops, self.test_ns):
            delattr(torch.ops, self.test_ns)
        if hasattr(self, "lib"):
            del self.lib.m
            del self.lib

    def get_op(self, name):
        return getattr(getattr(torch.ops, self.test_ns), name).default

    def get_lib(self):
        lib = Library(self.test_ns, "FRAGMENT")  # noqa: TOR901
        self.lib = lib
        return lib

    def test_bad_decomp(self):
        mod = import_module("torch._inductor.compile_fx")

        def bad_exp_decomp(self, rate=1, generator=None):
            assert generator is None
            torch._check(
                not utils.is_complex_dtype(self.dtype)
                and not utils.is_integer_dtype(self.dtype)
                and not utils.is_boolean_dtype(self.dtype),
                lambda: f"Exponential distribution is a continuous probability distribution. \
                dtype must be a floating point but you specified {self.dtype}",
            )
            torch._check(
                rate > 0.0,
                lambda: f"exponential_ expects lambda > 0.0, but found lambda={rate}",
            )
            return torch.rand_like(self) * float("nan")

        @contextmanager
        def patch_exp_decomp():
            from torch._inductor.compile_fx import select_decomp_table as old_decomp

            def get_decomp():
                out = old_decomp()
                out = out.copy()
                out[aten.exponential.default] = bad_exp_decomp
                return out

            torch._inductor.compile_fx.select_decomp_table = get_decomp
            try:
                yield

            finally:
                torch._inductor.compile_fx.select_decomp_table = old_decomp

        def vq(x):
            return (x + 3).exponential_() * 10.5

        def test_fn():
            torch._dynamo.reset()
            with patch_exp_decomp():
                vq_compiled = torch.compile(vq)
                x = torch.randn(4, 400, 256).cuda()
                with torch._dynamo.utils.preserve_rng_state():
                    out = vq(x)
                out_compiled = vq_compiled(x)

            return not out_compiled.isnan().any()

        out = CompilerBisector.do_bisect(test_fn)
        self.assertEqual(out.backend, "aot_eager_decomp_partition")
        self.assertEqual(out.subsystem, "decomposition")
        self.assertEqual(out.bisect_number, 1)
        self.assertTrue("aten.exponential" in out.debug_info)

    def test_joint_graph(self):
        from torch._inductor import config

        def pass_fn(graph: torch.fx.Graph):
            nodes = graph.find_nodes(
                op="call_function", target=torch.ops.aten.add.Tensor
            )
            assert len(nodes) == 1
            args = list(nodes[0].args)
            args[1] = 2
            nodes[0].args = tuple(args)

        config.joint_custom_post_pass = pass_fn

        def foo(x):
            return x + 1

        def test_fn():
            torch._dynamo.reset()

            inp = torch.rand([10], device="cuda")

            out = foo(inp)
            out_c = torch.compile(foo)(inp)

            return torch.allclose(out, out_c)

        out = CompilerBisector.do_bisect(test_fn)
        self.assertEqual(out.backend, "inductor")
        self.assertEqual(out.subsystem, "joint_graph_passes")
        self.assertEqual(out.bisect_number, 4)
        self.assertTrue("joint_custom_post_pass" in out.debug_info)

    def test_rng(self):
        def foo():
            return torch.rand([10], device="cuda") + 1

        def test_fn():
            torch._dynamo.reset()

            with preserve_rng_state():
                out = foo()
            with preserve_rng_state():
                out_c = torch.compile(foo)()

            return torch.allclose(out, out_c)

        out = CompilerBisector.do_bisect(test_fn)
        self.assertEqual(out.backend, "inductor")
        self.assertEqual(out.subsystem, "inductor_fallback_random")
        self.assertTrue("inductor_fallback_random" in out.debug_info)

    def test_crossref(self):
        test_ns = "bisect_ops"
        with _scoped_library(self.test_ns, "FRAGMENT") as lib:
            lib.define("foo(Tensor x) -> Tensor")
            op = self.get_op("foo")

            class Foo(torch.autograd.Function):
                @staticmethod
                def forward(ctx, x):
                    # Emulate AutoDispatchBelowADInplaceOrView, which is not bound into python
                    with torch._C._AutoDispatchBelowAutograd():
                        with torch._C._ExcludeDispatchKeyGuard(
                            torch._C.DispatchKeySet(
                                torch._C.DispatchKey.ADInplaceOrView
                            )
                        ):
                            return op(x)

                @staticmethod
                def backward(ctx, gx):
                    return gx

            def foo_impl(x):
                return x.view_as(x).clone()

            def foo_meta(x):
                return x.view_as(x)

            lib.impl("foo", Foo.apply, "Autograd")
            lib.impl("foo", foo_impl, "CPU")
            lib.impl("foo", foo_meta, "Meta")

            x = torch.tensor(3.14159 / 3, requires_grad=True)

            def test_fn():
                torch._dynamo.reset()

                try:
                    torch.testing.assert_allclose(torch.compile(op)(x), op(x))
                except Exception:
                    return False
                return True

            out = CompilerBisector.do_bisect(test_fn)
            self.assertEqual(out.backend, "aot_eager_decomp_partition_crossref")

    def test_emulate_precision_casts(self):
        def test_fn():
            torch._dynamo.reset()

            def calculate_scale(inp):
                amax = torch.abs(torch.max(inp))
                scale = 448.0 / torch.clamp(amax, min=1e-12)
                scale = scale.to(torch.float32)
                return scale

            dtype = torch.bfloat16
            torch.manual_seed(0)
            inp = torch.randn(16, 16, 768, dtype=dtype, device="cuda")
            eager_scale = calculate_scale(inp)
            compile_scale = torch.compile(calculate_scale)(inp)

            return torch.equal(eager_scale, compile_scale)

        out = CompilerBisector.do_bisect(test_fn)
        self.assertEqual(out.backend, "inductor")
        self.assertEqual(out.subsystem, "inductor_emulate_precision_casts")

    def test_bad_lowering(self):
        def test_fn():
            torch._dynamo.reset()
            with config.patch("triton.inject_relu_bug_TESTING_ONLY", "accuracy"):

                def my_func(x):
                    return ((x * -1) - 0.01).relu()

                inp = torch.rand([100], device="cuda")

                return torch.allclose(torch.compile(my_func)(inp), my_func(inp))

        out = CompilerBisector.do_bisect(test_fn)
        self.assertEqual(out.backend, "inductor")
        self.assertEqual(out.subsystem, "lowerings")
        self.assertEqual(out.bisect_number, 2)
        self.assertTrue("relu" in out.debug_info)

    def test_eager_backend(self):
        # should indicate problem with first backend
        def test_fn():
            return False

        out = CompilerBisector.do_bisect(test_fn)
        self.assertEqual(out.backend, "eager")
        self.assertEqual(out.subsystem, None)


if __name__ == "__main__":
    from torch._dynamo.test_case import run_tests

    run_tests()