File: test_comptime.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (426 lines) | stat: -rw-r--r-- 10,913 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# Owner(s): ["module: dynamo"]

import collections
import re
import sys
import time
from io import StringIO

import torch._dynamo.test_case
import torch._dynamo.testing
from torch._dynamo.comptime import comptime


# Because we don't support free variables in comptime at the moment,
# we have to communicate via globals.  This also means these tests cannot
# be run in parallel in a single process (not that you'd... ever want
# to do that?)
FILE = None
SELF = None


class ComptimeTests(torch._dynamo.test_case.TestCase):
    def test_print_single(self):
        global FILE
        FILE = StringIO()
        cnt = torch._dynamo.testing.CompileCounter()

        def comptime_print(e):
            @comptime
            def _(ctx):
                ctx.print(ctx.get_local("e"), file=FILE)

        Employee = collections.namedtuple("Employee", ["name", "id"])

        class mylist(list):
            pass

        @torch.compile(backend=cnt, dynamic=True)
        def f(x):
            y = x * 2
            comptime_print(y)
            comptime_print(2)
            comptime_print([y, 2])
            comptime_print((y, 2))
            comptime_print({"foo": y})
            comptime_print(range(1, 3))
            comptime_print(Employee("foo", 2))
            comptime_print(mylist([1, 2]))
            comptime_print(collections.defaultdict(lambda: None))
            comptime_print(set())
            comptime_print({"a", "b"})
            comptime_print(x.size(0))
            return y + 3

        f(torch.randn(2))
        self.assertEqual(cnt.frame_count, 1)
        self.assertExpectedInline(
            FILE.getvalue().strip(),
            """\
FakeTensor(..., size=(s0,))
2
[FakeTensor(..., size=(s0,)), 2]
(FakeTensor(..., size=(s0,)), 2)
{'foo': FakeTensor(..., size=(s0,))}
range(1, 3, 1)
Employee(name='foo', id=2)
[1, 2]
defaultdict(NestedUserFunctionVariable(), {})
set()
{'a','b'}
s0""",
        )

    def test_print_graph(self):
        global FILE
        FILE = StringIO()
        cnt = torch._dynamo.testing.CompileCounter()

        @torch.compile(backend=cnt)
        def f(x):
            y = x * 2

            @comptime
            def _(ctx):
                ctx.print_graph(verbose=False, file=FILE)

            # Test the compact notation doesn't error or graph break;
            # you'll have to visually inspect to see that it printed
            comptime.print_graph()

            return y + 3

        f(torch.randn(2))
        self.assertEqual(cnt.frame_count, 1)
        self.assertExpectedInline(
            FILE.getvalue().strip(),
            """\
def forward(self, L_x_ : torch.Tensor):
    l_x_ = L_x_
    y = l_x_ * 2;  l_x_ = y = None""",
        )

    def test_print_disas(self):
        global FILE
        FILE = StringIO()
        cnt = torch._dynamo.testing.CompileCounter()

        @torch.compile(backend=cnt)
        def f(x):
            y = x * 2

            @comptime
            def _(ctx):
                ctx.print_disas(file=FILE)

            comptime.print_disas()

            return y + 3

        def munge_disas(s):
            re.sub(
                r"^(?: +\d+)?(?: +(-->)) \+\d+ ([A-Za-z0-9_]+)",
                "\1 \3",
                s,
                flags=re.MULTILINE,
            )

        f(torch.randn(2))
        self.assertEqual(cnt.frame_count, 1)
        out = FILE.getvalue()
        # Check that the instruction offset is working
        self.assertIn("-->", out)
        # Check that the bytecode resembles what we expect
        self.assertIn("STORE_FAST", out)
        if sys.version_info < (3, 11):
            self.assertIn("BINARY_MULTIPLY", out)
        else:
            self.assertIn("BINARY_OP", out)

    def test_print_value_stack(self):
        global FILE
        FILE = StringIO()
        cnt = torch._dynamo.testing.CompileCounter()

        def g(x):
            @comptime
            def _(ctx):
                ctx.print_value_stack(file=FILE, stacklevel=1)

            return x

        @torch.compile(backend=cnt)
        def f(x):
            y = x + g(x)

            return y + comptime.print_value_stack_and_return(y * 2)

        f(torch.randn(2))
        self.assertEqual(cnt.frame_count, 1)
        self.assertExpectedInline(
            FILE.getvalue(),
            """\
- FakeTensor(..., size=(2,))
""",
        )

    def test_print_locals(self):
        global FILE
        FILE = StringIO()
        cnt = torch._dynamo.testing.CompileCounter()

        @torch.compile(backend=cnt)
        def f(x):
            y = x * 2

            @comptime
            def _(ctx):
                ctx.print_locals(file=FILE)

            comptime.print_locals()

            return y + 3

        f(torch.randn(2))
        self.assertEqual(cnt.frame_count, 1)
        self.assertExpectedInline(
            FILE.getvalue(),
            """\
x = FakeTensor(..., size=(2,))
y = FakeTensor(..., size=(2,))
""",
        )

    # Just make sure it doesn't crash
    def test_print_direct(self):
        cnt = torch._dynamo.testing.CompileCounter()

        @torch.compile(backend=cnt)
        def f(x, z):
            y = x * 2
            lambda: z
            comptime.print(z)
            return y + 3

        f(torch.randn(2), torch.randn(2))

    def test_sleep(self):
        sleep_time = 5
        cnt = torch._dynamo.testing.CompileCounter()

        @torch.compile(backend=cnt)
        def f(x, z, should_sleep):
            if should_sleep:
                comptime.sleep(sleep_time)
            y = x * 2
            return y + 3

        start = time.time()
        f(torch.randn(2), torch.randn(2), False)
        total_no_sleep = time.time() - start

        start = time.time()
        f(torch.randn(2), torch.randn(2), True)
        total_with_sleep = time.time() - start

        self.assertTrue(total_with_sleep > sleep_time)
        # Hopefully this won't be flaky
        self.assertTrue(abs(total_with_sleep - sleep_time - total_no_sleep) < 3)

    # Just make sure it doesn't crash
    def test_get_local_closure_variable(self):
        global SELF
        SELF = self
        cnt = torch._dynamo.testing.CompileCounter()

        @torch.compile(backend=cnt)
        def f(x):
            z = 3

            def g():
                @comptime
                def _(ctx):
                    r = ctx.get_local("z")
                    SELF.assertEqual(repr(r), "3")

                comptime.print(z)
                return 2

            y = x * g()
            return y + 3

        f(torch.randn(2))

    def test_print_bt(self):
        global FILE
        FILE = StringIO()
        cnt = torch._dynamo.testing.CompileCounter()

        def g(x):
            @comptime
            def _(ctx):
                ctx.print_bt(file=FILE)

            comptime.print_bt()

            return x + 3

        @torch.compile(backend=cnt)
        def f(x):
            y = x * 2
            y = g(y)
            return y + 3

        def munge_filenames(s):
            return re.sub(r'File "[^"]+", line \d+', 'File "X", line X', s)

        f(torch.randn(2))
        self.assertEqual(cnt.frame_count, 1)
        bt = FILE.getvalue()
        self.assertIn("y = g(y)", bt)

    def test_print_guards(self):
        global FILE
        FILE = StringIO()
        cnt = torch._dynamo.testing.CompileCounter()

        @torch.compile(backend=cnt)
        def f(x):
            y = x * 2

            @comptime
            def _(ctx):
                ctx.print_guards(file=FILE)

            comptime.print_guards()

            return y + 3

        f(torch.randn(2))
        self.assertEqual(cnt.frame_count, 1)
        self.assertExpectedInline(
            re.sub(r"\s+$", "", FILE.getvalue().rstrip(), flags=re.MULTILINE),
            """\

        local "L['x']" TENSOR_MATCH
        {
            'guard_types': None,
            'code': None,
            'obj_weakref': None
            'guarded_class': None
        }
        global '' GRAD_MODE
        {
            'guard_types': None,
            'code': None,
            'obj_weakref': None
            'guarded_class': None
        }
        global '' DETERMINISTIC_ALGORITHMS
        {
            'guard_types': None,
            'code': None,
            'obj_weakref': None
            'guarded_class': None
        }
        global '' TORCH_FUNCTION_STATE
        {
            'guard_types': None,
            'code': None,
            'obj_weakref': None
            'guarded_class': None
        }
        global '' DEFAULT_DEVICE
        {
            'guard_types': None,
            'code': None,
            'obj_weakref': None
            'guarded_class': None
        }
        shape_env '' SHAPE_ENV
        {
            'guard_types': None,
            'code': None,
            'obj_weakref': None
            'guarded_class': None
        }""",
        )

    def test_graph_break(self):
        cnt = torch._dynamo.testing.CompileCounter()

        @torch.compile(backend=cnt)
        def f(x):
            y = x * 2

            @comptime
            def _(ctx):
                pass

            return y + 3

        f(torch.randn(2))
        self.assertEqual(cnt.frame_count, 1)
        cnt.frame_count = 0

        @torch.compile(backend=cnt)
        def g(x):
            y = x * 2

            @comptime
            def _(ctx):
                ctx.graph_break()

            y = y + 2

            comptime.graph_break()

            return y * 3

        g(torch.randn(2))
        self.assertEqual(cnt.frame_count, 3)

    def test_get_local(self):
        global SELF, FILE
        SELF = self
        FILE = StringIO()
        cnt = torch._dynamo.testing.CompileCounter()

        @torch.compile(backend=cnt)
        def f(x):
            y = x * 2
            lit = 2

            @comptime
            def _(ctx):
                y = ctx.get_local("y")
                SELF.assertEqual(y.as_fake().size(0), 2)
                SELF.assertEqual(y.size(0), 2)
                # Trigger a graph write (TODO: this is not so
                # useful right now as there's no way to make use
                # of the output proxy; maybe it's useful for inserting
                # side-effectful operations into the graph)
                y.as_proxy() + 4
                ctx.print_graph(verbose=False, file=FILE)
                SELF.assertIs(y.python_type(), torch.Tensor)
                lit = ctx.get_local("lit")
                SELF.assertEqual(lit.as_python_constant(), 2)

            return y + 3

        f(torch.randn(2))
        self.assertEqual(cnt.frame_count, 1)
        self.assertExpectedInline(
            FILE.getvalue().strip(),
            """\
def forward(self, L_x_ : torch.Tensor):
    l_x_ = L_x_
    y = l_x_ * 2;  l_x_ = None
    add = y + 4;  y = add = None""",
        )


if __name__ == "__main__":
    from torch._dynamo.test_case import run_tests

    run_tests()