1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
# Owner(s): ["module: cuda graphs"]
import functools
import unittest
import torch
import torch._dynamo
import torch._dynamo.config
import torch._dynamo.test_case
import torch._dynamo.testing
from torch._dynamo.testing import same
from torch.testing._internal.common_utils import TEST_CUDA_GRAPH
def composed(*decs):
def deco(f):
for dec in reversed(decs):
f = dec(f)
return f
return deco
def assert_aot_autograd_counter(ok=True):
def deco(f):
@functools.wraps(f)
def wrap(self, *args, **kwargs):
torch._dynamo.utils.counters.clear()
r = f(self, *args, **kwargs)
c_ok = torch._dynamo.utils.counters["aot_autograd"]["ok"]
c_not_ok = torch._dynamo.utils.counters["aot_autograd"]["not_ok"]
if ok:
self.assertGreater(c_ok, 0)
self.assertEqual(c_not_ok, 0)
else:
self.assertEqual(c_ok, 0)
self.assertGreater(c_not_ok, 0)
return r
return wrap
return deco
def patch_all(ok=True):
return composed(
torch._dynamo.config.patch(
verify_correctness=True, automatic_dynamic_shapes=True
),
assert_aot_autograd_counter(ok),
)
N_ITERS = 5
@unittest.skipIf(not torch.cuda.is_available(), "these tests require cuda")
class TestAotCudagraphs(torch._dynamo.test_case.TestCase):
@patch_all()
def test_basic(self):
def model(x, y):
return (x + y) * y
@torch.compile(backend="cudagraphs")
def fn(x, y):
for i in range(N_ITERS):
loss = model(x, y).sum()
loss.backward()
x = torch.randn(3, device="cuda", requires_grad=True)
y = torch.randn(3, device="cuda")
fn(x, y)
@patch_all()
def test_dtoh(self):
def model(x, y):
a = x + y
b = a.cpu() * 3
return b
@torch.compile(backend="cudagraphs")
def fn(x, y):
for i in range(N_ITERS):
loss = model(x, y).sum()
loss.backward()
x = torch.randn(3, device="cuda", requires_grad=True)
y = torch.randn(3, device="cuda")
fn(x, y)
@patch_all()
def test_htod(self):
def model(x, y):
a = x + y
return a * 3
@torch.compile(backend="cudagraphs")
def fn(x, y):
for i in range(N_ITERS):
loss = model(x, y).sum()
loss.backward()
x = torch.randn(3, device="cuda", requires_grad=True)
y = torch.randn((), device="cpu")
fn(x, y)
def test_mutate_input(self):
def model(x, y):
y.add_(3)
return x * y
@torch.compile(backend="cudagraphs")
def fn(x, y):
for i in range(N_ITERS):
with self.subTest(i):
y_orig = y.clone()
loss = model(x, y).sum()
self.assertTrue(same(y, y_orig + 3))
loss.backward()
x = torch.randn(3, device="cuda", requires_grad=True)
y = torch.randn(3, device="cuda")
fn(x, y)
@patch_all()
def test_mutate_constant(self):
def model(x, y):
c = torch.tensor(1)
c.add_(2)
return x * y * 0 + c
@torch.compile(backend="cudagraphs")
def fn(x, y):
for i in range(N_ITERS):
with self.subTest(i):
loss = model(x, y).sum()
self.assertTrue(same(loss, torch.tensor(3.0, device="cuda")))
loss.backward()
x = torch.randn(1, device="cuda", requires_grad=True)
y = torch.randn(1, device="cuda")
fn(x, y)
@patch_all()
def test_factory(self):
def model(y):
x = torch.zeros(3, device="cuda:0")
x.add_(3)
return x * y
@torch.compile(backend="cudagraphs")
def fn(y):
for i in range(N_ITERS):
with self.subTest(i):
loss = model(y).sum()
loss.backward()
y = torch.randn(3, device="cuda:0", requires_grad=True)
fn(y)
@patch_all()
def test_mutated_metadata(self):
# more tortured example at
# https://github.com/pytorch/pytorch/issues/81385
def model(x):
x = x.clone()
x.resize_(20)
x.fill_(2)
return x
@torch.compile(backend="cudagraphs")
def fn(x):
for i in range(N_ITERS):
with self.subTest(i):
rx = model(x)
self.assertTrue(same(rx, torch.full((20,), 2.0, device="cuda:0")))
x = torch.empty(0, device="cuda:0")
fn(x)
@patch_all()
def test_dead_fill(self):
def model(x):
x = x.clone()
y = x[0:0]
x.fill_(2)
y.fill_(3)
return x, y
@torch.compile(backend="cudagraphs")
def fn(x):
for i in range(N_ITERS):
with self.subTest(i):
rx, ry = model(x)
self.assertTrue(same(rx, torch.full((20,), 2.0, device="cuda:0")))
self.assertTrue(same(ry, torch.empty(0, device="cuda:0")))
x = torch.empty(20, device="cuda:0")
fn(x)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
if not TEST_CUDA_GRAPH:
if __name__ == "__main__":
import sys
sys.exit(0)
raise unittest.SkipTest("cuda graph test is skipped")
run_tests()
|