File: test_exceptions.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (409 lines) | stat: -rw-r--r-- 11,548 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# Owner(s): ["module: dynamo"]

import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.nn
import torch.utils.checkpoint


class ExceptionTests(torch._dynamo.test_case.TestCase):
    def test_exception(self):
        def fn(x):
            x = torch.cos(x)
            try:
                x = torch.sin(x)
                raise NotImplementedError
            except Exception:
                x = torch.sigmoid(x)

            return x

        x = torch.randn(4)
        ref = fn(x)
        opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
        res = opt_fn(x)
        self.assertEqual(ref, res)

    def test_exception2(self):
        def fn(x):
            x = torch.cos(x)
            try:
                x = torch.sin(x)
                raise NotImplementedError
            except (NotImplementedError, AttributeError) as e:
                x = torch.sigmoid(x)

            return x

        x = torch.randn(4)
        ref = fn(x)
        opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
        res = opt_fn(x)
        self.assertEqual(ref, res)

    def test_exception3(self):
        def fn(x):
            x = torch.cos(x)
            try:
                x = torch.sin(x)
                raise NotImplementedError("Not implemented")
            except AssertionError:
                x = torch.sigmoid(x)
            except NotImplementedError:
                x = torch.cos(x)
            finally:
                x = torch.cos(x)

            return x

        x = torch.randn(4)
        ref = fn(x)
        opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
        res = opt_fn(x)
        self.assertEqual(ref, res)

    def test_exception4(self):
        def fn(x):
            for i in range(10):
                if i == 5:
                    return x
                try:
                    x = torch.sin(x)
                    raise NotImplementedError
                except Exception:
                    x = torch.sigmoid(x)

            return x

        x = torch.randn(4)
        ref = fn(x)
        opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
        res = opt_fn(x)
        self.assertEqual(ref, res)

    def test_exception_with_another_exception(self):
        def fn(x):
            x = torch.cos(x)
            try:
                x = torch.sin(x)
                raise NotImplementedError("Not implemented")
            except NotImplementedError as e:
                x = torch.sigmoid(x)
                try:
                    x = torch.cos(x)
                    raise AssertionError
                except AssertionError:
                    x = torch.cos(x)

        x = torch.randn(4)
        ref = fn(x)
        opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
        res = opt_fn(x)
        self.assertEqual(ref, res)

    def test_exception_else(self):
        def gn(x):
            return torch.cos(x)

        def fn(x):
            x = torch.cos(x)
            try:
                x = torch.sin(x)
                x = gn(x)
            except Exception:
                x = torch.sigmoid(x)
            else:
                x = torch.cos(x)

            return x

        x = torch.randn(4)
        ref = fn(x)
        opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
        res = opt_fn(x)
        self.assertEqual(ref, res)

    # TODO(anijain2305) - does not work with fullgraph=True
    def test_exception_with_another_exception2(self):
        def gn(x):
            try:
                x = torch.cos(x)
                raise NotImplementedError("Not implemented")
            except NotImplementedError as e:
                x = torch.sigmoid(x)
                raise

        def fn(x):
            try:
                x = torch.cos(x)
                gn(x)
            except Exception:
                pass
            return x

        x = torch.randn(4)
        ref = fn(x)
        # Cant use fullgraph=True because RERAISE is not supported
        opt_fn = torch.compile(fn, backend="eager")
        res = opt_fn(x)

    # TODO(anijain2305) - does not work with fullgraph=True
    def test_exception_with_ctx_manager(self):
        def fn(x):
            x = torch.cos(x)
            try:
                with torch.no_grad():
                    x = torch.sin(x)
                    raise NotImplementedError("Not implemented")
            except NotImplementedError as e:
                x = torch.sigmoid(x)
            return x

        x = torch.randn(4)
        ref = fn(x)
        # Cant use fullgraph=True because WITH_EXCEPT_START is not supported
        opt_fn = torch.compile(fn, backend="eager")
        res = opt_fn(x)
        self.assertEqual(ref, res)

    def test_exception_raised_from_child(self):
        def gn():
            raise NotImplementedError("foo")

        def fn(x):
            x = torch.cos(x)
            try:
                x = torch.sin(x)
                gn()
                x = torch.sin(x)
            except Exception:
                x = torch.sigmoid(x)

            return x

        x = torch.randn(4)
        ref = fn(x)
        opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
        res = opt_fn(x)
        self.assertEqual(ref, res)

    def test_dynamo_undo_kw_names(self):
        def g(x, k=None):
            if k:
                raise TypeError("error")
            return x.sin()

        def fn(x):
            d = {"a": x}
            try:
                g(x, k=True)
            except Exception:
                y = 0
                for _, b in d.items():  # noqa: PERF102
                    y += b.sum()
            return y

        x = torch.randn(2, 3)
        expected = fn(x)
        opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
        got = opt_fn(x)
        self.assertEqual(expected, got)

    def test_nn_module_getattr(self):
        class A:
            def __init__(self) -> None:
                self._b = 20

            def __getattr__(self, name):
                fixed_name = "_" + name
                if fixed_name in self.__dict__:
                    return self.__dict__[fixed_name]
                raise AttributeError(f"{name} absent")

        class B(A):
            def __init__(self) -> None:
                self.a = 10

            def __getattr__(self, name):
                try:
                    return super().__getattr__(name)
                except AttributeError:
                    return 30

        obj = B()

        def fn(x):
            return x * obj.a * obj.b * obj.c

        x = torch.ones(4)
        ref = fn(x)
        print(ref)
        opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
        res = opt_fn(x)
        self.assertEqual(ref, res)

    @torch._dynamo.config.patch(inline_inbuilt_nn_modules=True)
    def test_custom_getattr_on_module_exception(self):
        class Foo(torch.nn.Module):
            def __init__(self, a=3):
                super().__init__()
                self.register_parameter("a", torch.nn.Parameter(torch.ones(4) * 2))

            def __getattr__(self, name):
                try:
                    return super().__getattr__(name)  # defer to nn.Module's logic
                except AttributeError:
                    if name == "a_copy":
                        return self.a
                    raise

            def forward(self, x):
                return x * self.a * self.a_copy

        mod = Foo()
        opt_mod = torch.compile(mod, backend="eager", fullgraph=True)

        x = torch.ones(4)
        self.assertEqual(mod(x), opt_mod(x))

    def test_attribute_error_from_getattr(self):
        class Mock:
            def __init__(self):
                self.a = 5

            def __getattr__(self, name):
                if name != "a":
                    raise AttributeError("missing")
                return self.__dict__["a"]

        mock = Mock()

        def fn(x):
            if hasattr(mock, "b"):
                return torch.cos(x)
            return torch.sin(x)

        opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
        x = torch.randn(4)
        ref = fn(x)
        res = opt_fn(x)
        self.assertEqual(ref, res)

    def test_stop_iteration(self):
        def zip_longest(*iterables, fillvalue=None):
            # Get the iterators for each iterable
            iterators = [iter(it) for it in iterables]

            result = []
            while True:
                for it in iterators:
                    try:
                        value = next(it)
                    except StopIteration:
                        result.append(fillvalue)
                        return result
                    result.append(value)

        def fn(x, y):
            torch.cos(torch.randn(4))
            return tuple(zip_longest(x, y))

        x = [1, 2, 3, 4]
        y = [10, 11, 12]

        opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
        ref = fn(x, y)
        res = opt_fn(x, y)
        self.assertEqual(ref, res)

    def test_nn_reraise(self):
        class M(torch.nn.Module):
            def forward(self, x):
                raise ValueError("woof")
                return x + 2

        m = M()
        m.register_forward_pre_hook(lambda m, go: None)

        torch._dynamo.utils.clear_compilation_metrics()
        opt_call = torch.compile(lambda x: m(x), backend="eager")
        self.assertRaises(ValueError, lambda: opt_call(torch.randn(3)))
        metrics = torch._dynamo.utils.get_compilation_metrics()
        self.assertEqual(metrics[0].fail_reason, "Observed exception")

    def test_key_error(self):
        def fn(x, d):
            try:
                a = d["b"]
            except KeyError:
                a = 2
            return x * a

        opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
        x = torch.randn(4)
        d = {"a": 1}
        ref = fn(x, d)
        res = opt_fn(x, d)
        self.assertEqual(ref, res)

    def test_atrribute_error(self):
        class Mock:
            def __init__(self):
                self.a = 1

        mock = Mock()

        def fn(x):
            try:
                c = 2
                mock.b
            except AttributeError:
                c = 3
            return torch.sin(x) * c

        opt_fn = torch.compile(fn, backend="eager")
        x = torch.randn(4)
        ref = fn(x)
        res = opt_fn(x)
        self.assertEqual(ref, res)

    def test_raise_from_None(self):
        # Inspired from os.environ
        class MyMapping:
            def __init__(self, d):
                self._d = d

            def __getitem__(self, key):
                try:
                    value = self._d[key]
                except KeyError:
                    raise KeyError(key) from None
                return value

        d = MyMapping({"a": 10, "b": 20})

        def mapping_get(obj, key, value=None):
            try:
                return obj.__getitem__(key)
            except KeyError:
                return value

        def fn(x, d, key):
            x = torch.sin(x + 1)
            return x, mapping_get(d, key)

        opt_fn = torch.compile(fn, backend="eager", fullgraph=True)

        x = torch.rand(2, 3)
        ref = fn(x, d, "m")
        res = opt_fn(x, d, "m")
        self.assertEqual(ref[0], res[0])
        self.assertEqual(ref[1], res[1])


if __name__ == "__main__":
    from torch._dynamo.test_case import run_tests

    run_tests()