1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
# Owner(s): ["module: dynamo"]
import torch
import torch._dynamo.config
import torch._dynamo.test_case
import torch._functorch.config
import torch.nn
import torch.utils.checkpoint
class ExceptionTests(torch._dynamo.test_case.TestCase):
def test_exception(self):
def fn(x):
x = torch.cos(x)
try:
x = torch.sin(x)
raise NotImplementedError
except Exception:
x = torch.sigmoid(x)
return x
x = torch.randn(4)
ref = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
def test_exception2(self):
def fn(x):
x = torch.cos(x)
try:
x = torch.sin(x)
raise NotImplementedError
except (NotImplementedError, AttributeError) as e:
x = torch.sigmoid(x)
return x
x = torch.randn(4)
ref = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
def test_exception3(self):
def fn(x):
x = torch.cos(x)
try:
x = torch.sin(x)
raise NotImplementedError("Not implemented")
except AssertionError:
x = torch.sigmoid(x)
except NotImplementedError:
x = torch.cos(x)
finally:
x = torch.cos(x)
return x
x = torch.randn(4)
ref = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
def test_exception4(self):
def fn(x):
for i in range(10):
if i == 5:
return x
try:
x = torch.sin(x)
raise NotImplementedError
except Exception:
x = torch.sigmoid(x)
return x
x = torch.randn(4)
ref = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
def test_exception_with_another_exception(self):
def fn(x):
x = torch.cos(x)
try:
x = torch.sin(x)
raise NotImplementedError("Not implemented")
except NotImplementedError as e:
x = torch.sigmoid(x)
try:
x = torch.cos(x)
raise AssertionError
except AssertionError:
x = torch.cos(x)
x = torch.randn(4)
ref = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
def test_exception_else(self):
def gn(x):
return torch.cos(x)
def fn(x):
x = torch.cos(x)
try:
x = torch.sin(x)
x = gn(x)
except Exception:
x = torch.sigmoid(x)
else:
x = torch.cos(x)
return x
x = torch.randn(4)
ref = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
# TODO(anijain2305) - does not work with fullgraph=True
def test_exception_with_another_exception2(self):
def gn(x):
try:
x = torch.cos(x)
raise NotImplementedError("Not implemented")
except NotImplementedError as e:
x = torch.sigmoid(x)
raise
def fn(x):
try:
x = torch.cos(x)
gn(x)
except Exception:
pass
return x
x = torch.randn(4)
ref = fn(x)
# Cant use fullgraph=True because RERAISE is not supported
opt_fn = torch.compile(fn, backend="eager")
res = opt_fn(x)
# TODO(anijain2305) - does not work with fullgraph=True
def test_exception_with_ctx_manager(self):
def fn(x):
x = torch.cos(x)
try:
with torch.no_grad():
x = torch.sin(x)
raise NotImplementedError("Not implemented")
except NotImplementedError as e:
x = torch.sigmoid(x)
return x
x = torch.randn(4)
ref = fn(x)
# Cant use fullgraph=True because WITH_EXCEPT_START is not supported
opt_fn = torch.compile(fn, backend="eager")
res = opt_fn(x)
self.assertEqual(ref, res)
def test_exception_raised_from_child(self):
def gn():
raise NotImplementedError("foo")
def fn(x):
x = torch.cos(x)
try:
x = torch.sin(x)
gn()
x = torch.sin(x)
except Exception:
x = torch.sigmoid(x)
return x
x = torch.randn(4)
ref = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
def test_dynamo_undo_kw_names(self):
def g(x, k=None):
if k:
raise TypeError("error")
return x.sin()
def fn(x):
d = {"a": x}
try:
g(x, k=True)
except Exception:
y = 0
for _, b in d.items(): # noqa: PERF102
y += b.sum()
return y
x = torch.randn(2, 3)
expected = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
got = opt_fn(x)
self.assertEqual(expected, got)
def test_nn_module_getattr(self):
class A:
def __init__(self) -> None:
self._b = 20
def __getattr__(self, name):
fixed_name = "_" + name
if fixed_name in self.__dict__:
return self.__dict__[fixed_name]
raise AttributeError(f"{name} absent")
class B(A):
def __init__(self) -> None:
self.a = 10
def __getattr__(self, name):
try:
return super().__getattr__(name)
except AttributeError:
return 30
obj = B()
def fn(x):
return x * obj.a * obj.b * obj.c
x = torch.ones(4)
ref = fn(x)
print(ref)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref, res)
@torch._dynamo.config.patch(inline_inbuilt_nn_modules=True)
def test_custom_getattr_on_module_exception(self):
class Foo(torch.nn.Module):
def __init__(self, a=3):
super().__init__()
self.register_parameter("a", torch.nn.Parameter(torch.ones(4) * 2))
def __getattr__(self, name):
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "a_copy":
return self.a
raise
def forward(self, x):
return x * self.a * self.a_copy
mod = Foo()
opt_mod = torch.compile(mod, backend="eager", fullgraph=True)
x = torch.ones(4)
self.assertEqual(mod(x), opt_mod(x))
def test_attribute_error_from_getattr(self):
class Mock:
def __init__(self):
self.a = 5
def __getattr__(self, name):
if name != "a":
raise AttributeError("missing")
return self.__dict__["a"]
mock = Mock()
def fn(x):
if hasattr(mock, "b"):
return torch.cos(x)
return torch.sin(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
x = torch.randn(4)
ref = fn(x)
res = opt_fn(x)
self.assertEqual(ref, res)
def test_stop_iteration(self):
def zip_longest(*iterables, fillvalue=None):
# Get the iterators for each iterable
iterators = [iter(it) for it in iterables]
result = []
while True:
for it in iterators:
try:
value = next(it)
except StopIteration:
result.append(fillvalue)
return result
result.append(value)
def fn(x, y):
torch.cos(torch.randn(4))
return tuple(zip_longest(x, y))
x = [1, 2, 3, 4]
y = [10, 11, 12]
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
ref = fn(x, y)
res = opt_fn(x, y)
self.assertEqual(ref, res)
def test_nn_reraise(self):
class M(torch.nn.Module):
def forward(self, x):
raise ValueError("woof")
return x + 2
m = M()
m.register_forward_pre_hook(lambda m, go: None)
torch._dynamo.utils.clear_compilation_metrics()
opt_call = torch.compile(lambda x: m(x), backend="eager")
self.assertRaises(ValueError, lambda: opt_call(torch.randn(3)))
metrics = torch._dynamo.utils.get_compilation_metrics()
self.assertEqual(metrics[0].fail_reason, "Observed exception")
def test_key_error(self):
def fn(x, d):
try:
a = d["b"]
except KeyError:
a = 2
return x * a
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
x = torch.randn(4)
d = {"a": 1}
ref = fn(x, d)
res = opt_fn(x, d)
self.assertEqual(ref, res)
def test_atrribute_error(self):
class Mock:
def __init__(self):
self.a = 1
mock = Mock()
def fn(x):
try:
c = 2
mock.b
except AttributeError:
c = 3
return torch.sin(x) * c
opt_fn = torch.compile(fn, backend="eager")
x = torch.randn(4)
ref = fn(x)
res = opt_fn(x)
self.assertEqual(ref, res)
def test_raise_from_None(self):
# Inspired from os.environ
class MyMapping:
def __init__(self, d):
self._d = d
def __getitem__(self, key):
try:
value = self._d[key]
except KeyError:
raise KeyError(key) from None
return value
d = MyMapping({"a": 10, "b": 20})
def mapping_get(obj, key, value=None):
try:
return obj.__getitem__(key)
except KeyError:
return value
def fn(x, d, key):
x = torch.sin(x + 1)
return x, mapping_get(d, key)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
x = torch.rand(2, 3)
ref = fn(x, d, "m")
res = opt_fn(x, d, "m")
self.assertEqual(ref[0], res[0])
self.assertEqual(ref[1], res[1])
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|