File: test_export_mutations.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (97 lines) | stat: -rw-r--r-- 3,326 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Owner(s): ["module: dynamo"]
import unittest

import torch
import torch._dynamo.test_case
import torch._dynamo.testing
from torch.testing._internal.common_utils import IS_FBCODE


class MutationExportTests(torch._dynamo.test_case.TestCase):
    def check_failure_on_export(self, mod, *args):
        with self.assertRaises(AssertionError):
            torch._dynamo.export(mod)(*args)

    def check_same_with_export(self, mod, arg):
        real_result = mod(arg)
        graph, _ = torch._dynamo.export(mod)(arg)
        result = graph(arg)
        self.assertEqual(result, real_result)

    def test_module_attribute_mutation_violation_positive_1(self):
        # Mutating attribute with a Tensor type
        class Foo(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.a = torch.randn(3, 2)

            def forward(self, x):
                self.a = self.a.to(torch.float64)
                return x.sum() + self.a.sum()

        self.check_failure_on_export(Foo(), torch.randn(3, 2))

    def test_module_attribute_mutation_violation_negative_1(self):
        # Mutating attribute with a Tensor type inside __init__ but
        # not in forward()
        class Foo(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.a = torch.randn(3, 2)

            def forward(self, x):
                return x.sum() + self.a.to(torch.float64).sum()

        self.check_same_with_export(Foo(), torch.randn(3, 2))

    def test_module_attribute_mutation_violation_negative_2(self):
        # Mutating attribute with a Tensor type inside __init__ twice
        class Foo(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.a = torch.randn(3, 2)
                self.a = self.a.to(torch.float64)

            def forward(self, x):
                return x.sum() + self.a.sum()

        self.check_same_with_export(Foo(), torch.randn(3, 2))

    def test_module_attribute_mutation_violation_negative_3(self):
        # Mutating local variable inside forward()
        class Foo(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.a = torch.randn(3, 2)

            def forward(self, x):
                b = 1
                b = b * 5
                return x.sum() + self.a.sum() + b

        self.check_same_with_export(Foo(), torch.randn(3, 2))

    @unittest.skipIf(IS_FBCODE, "Broken in fbcode")
    def test_module_attribute_mutation_violation_negative_4(self):
        # Mutating attribute with a Tensor type
        # But not exporting but using eager mode as well as dynamo optimize mode
        class Foo(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.a = torch.randn(3, 2)

            def forward(self, x):
                self.a = self.a.to(torch.float64)
                return x.sum() + self.a.sum()

        mod = Foo()
        arg = torch.randn(3, 2)
        real_result = mod(arg)
        opt_mod = torch.compile(mod, backend="eager", fullgraph=True)
        self.assertEqual(opt_mod(arg), real_result)


if __name__ == "__main__":
    from torch._dynamo.test_case import run_tests

    run_tests()