File: test_fx_passes_pre_grad.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (37 lines) | stat: -rw-r--r-- 1,156 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Owner(s): ["module: dynamo"]
from unittest import mock

import torch
import torch._dynamo
import torch._dynamo.test_case
from torch._inductor.utils import pass_execution_and_save


class FxPassesPreGradTests(torch._dynamo.test_case.TestCase):
    @mock.patch("torch._inductor.utils.ShapeProp.propagate")
    def test_pass_execution_and_save(self, mock_shape_prop):
        class TestModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.param = torch.nn.Parameter(torch.ones(4, 4))

            def forward(self, x: torch.Tensor) -> torch.Tensor:
                return self.param + x

        def fx_pass(graph: torch.fx.GraphModule) -> None:
            return

        sample_input = torch.randn(4, 4)
        m = TestModule()
        m(sample_input)
        exported_program = torch.export.export(m, (sample_input,))
        gm = exported_program.graph_module

        pass_execution_and_save(fx_pass, gm, sample_input, "Apply testing pass")
        mock_shape_prop.assert_called_once()


if __name__ == "__main__":
    from torch._dynamo.test_case import run_tests

    run_tests()