1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
# Owner(s): ["module: dynamo"]
from typing import Optional
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
from torch._dynamo.testing import same
try:
from . import utils
except ImportError:
import utils
class Pair: # noqa: B903
def __init__(self, x, y):
self.x = x
self.y = y
def Foo():
return Pair(1, 1)
g_counter = 1
g_list = [0, 1, 2]
g_dict = {"a": 0, "b": 1}
g_object = Foo()
g_tensor = torch.zeros(10)
_name: int = 0
def fresh_name() -> str:
"""create a new unique name for a variable: v0, v1, v2"""
global _name
r = f"v{_name}"
_name += 1
return r
def reset_name():
global _name
_name = 0
class TestGlobals(torch._dynamo.test_case.TestCase):
def test_store_global_1(self):
def fn(x):
global g_counter
val = x + g_counter
g_counter += 1
return val
x = torch.randn(10)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res1 = opt_fn(x)
res2 = fn(x)
self.assertTrue(same(res2 - res1, torch.ones(10)))
def test_store_global_2(self):
def fn(x):
global g_counter
val = x + g_counter
g_counter += 1
g_counter += 1
return val
x = torch.randn(10)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res1 = opt_fn(x)
"""Wrap the second call with torch._dynamo as well"""
opt_fn = torch.compile(fn, backend=cnts)
res2 = opt_fn(x)
self.assertTrue(same(res2 - res1, 2 * torch.ones(10)))
def test_store_global_new(self):
def fn(x):
# Test create a new global
global g_counter_new
g_counter_new = x + 1
return x + g_counter_new
x = torch.randn(10)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res1 = opt_fn(x)
self.assertTrue(same(res1, x + x + 1))
def test_store_global_list(self):
def fn(x):
global g_list
val = x + g_list[1]
"""
Strictly speaking, we are not testing STORE_GLOBAL
here, since STORE_SUBSCR is actually used to store.
"""
g_list[1] += 1
return val
x = torch.randn(10)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res1 = opt_fn(x)
res2 = fn(x)
self.assertTrue(same(res2 - res1, torch.ones(10)))
def test_store_global_list_2(self):
def fn(x):
global g_list
val = x + g_list[1]
g_list = [x + 1 for x in g_list]
return val
x = torch.randn(10)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res1 = opt_fn(x)
res2 = fn(x)
self.assertTrue(same(res2 - res1, torch.ones(10)))
def test_store_global_dict(self):
def fn(x):
global g_dict
val = x + g_dict["b"]
"""
Strictly speaking, we are not testing STORE_GLOBAL
here, since STORE_SUBSCR is actually used to store.
"""
g_dict["b"] += 1
return val
x = torch.randn(10)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res1 = opt_fn(x)
res2 = fn(x)
self.assertTrue(same(res2 - res1, torch.ones(10)))
def test_store_global_dict_2(self):
def fn(x):
global g_dict
g_dict = {key: value + 1 for key, value in g_dict.items()}
val = x + g_dict["b"]
return val
x = torch.randn(10)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res1 = opt_fn(x)
res2 = fn(x)
self.assertTrue(same(res2 - res1, torch.ones(10)))
def test_store_global_object(self):
def fn(x):
global g_object
val = x + g_object.y
g_object.y += 1
return val
x = torch.randn(10)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res1 = opt_fn(x)
res2 = fn(x)
self.assertTrue(same(res2 - res1, torch.ones(10)))
def test_store_global_cross_file(self):
def fn(x):
val = x + utils.g_tensor_export
utils.g_tensor_export = utils.g_tensor_export + 1
return val
x = torch.randn(10)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res1 = opt_fn(x)
res2 = fn(x)
self.assertTrue(same(res2 - res1, torch.ones(10)))
def test_store_global_inline_1(self):
# Borrowed from test_python_autograd.py
class Variable:
def __init__(self, value: torch.Tensor, name: Optional[str] = None):
self.value = value
self.name = name or fresh_name()
def fn(a, b):
a = Variable(a)
b = Variable(b)
return a.value + b.value, a.name + b.name
a = torch.randn(10)
b = torch.randn(10)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
v0, s0 = opt_fn(a, b)
self.assertEqual(s0, "v0v1")
reset_name()
def test_store_global_inline_2(self):
# Borrowed from test_python_autograd.py
class Variable:
def __init__(self, value: torch.Tensor, name: Optional[str] = None):
self.value = value
self.name = name or fresh_name()
@staticmethod
def constant(value: torch.Tensor, name: Optional[str] = None):
return Variable(value, name)
def fn(a, b):
a = Variable.constant(a)
b = Variable.constant(b)
return a.value + b.value, a.name + b.name
a = torch.randn(10)
b = torch.randn(10)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
v0, s0 = opt_fn(a, b)
self.assertEqual(s0, "v0v1")
reset_name()
def test_store_global_crossfile_inline(self):
try:
from . import mock_store_global_crossfile_inline
except ImportError:
import mock_store_global_crossfile_inline
@torch.compile()
def fn(x):
mock_store_global_crossfile_inline.set_flag_true()
mock_store_global_crossfile_inline.set_flag_false()
return x + 1
@torch.compile()
def fn_set_true(x):
mock_store_global_crossfile_inline.set_flag_true()
return x + 1
fn_set_true(torch.ones(2, 2))
self.assertTrue(mock_store_global_crossfile_inline.global_flag)
fn(torch.ones(2, 2))
self.assertFalse(mock_store_global_crossfile_inline.global_flag)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|