1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
# Owner(s): ["module: dynamo"]
import contextlib
import torch
import torch.fx
from torch._dynamo.test_case import TestCase
from torch._dynamo.testing import extract_graph_and_tracker
from torch.utils._pytree import tree_map
def get_nodes_by_name(graph, names):
nodes = []
for node in graph.nodes:
if node.name in names:
nodes.append(node)
return nodes
unique_ind = 0
def track_same_nodes(names, graph, region_tracker):
global unique_ind
unique_ind += 1
# find nodes in graph with names and track them
# as if they were at the same code location
nodes = get_nodes_by_name(graph, names)
for node in nodes:
region_tracker.track_node("x", unique_ind, node)
class GraphRegionTrackerTests(TestCase):
def setUp(self):
self.exit_stack = contextlib.ExitStack()
self.exit_stack.enter_context(
torch._dynamo.config.patch("track_nodes_for_deduplication", True)
)
super().setUp()
def tearDown(self):
self.exit_stack.close()
super().tearDown()
def get_result(self, fn, *args, **kwargs):
graph, region_tracker = extract_graph_and_tracker(fn, *args, **kwargs)
region_groups = region_tracker.get_identical_regions(graph)
region_groups = tree_map(lambda n: n.name, region_groups)
return str(region_groups)
def test_get_regions_single_region_group(self):
def inner_fn(x, y):
x0 = x + 1
y0 = y + 2
z = x0.sum() + y0.sum()
return z
def fn(x, y):
o0 = inner_fn(x, y)
o1 = torch.sin(y)
o2 = inner_fn(x, o1)
o3 = inner_fn(x, y)
o4 = o3 * o3
return o2 * o4
self.assertExpectedInline(
self.get_result(
fn,
torch.rand(10, 10),
torch.ones(10, 20),
),
"""[[['y0', 'x0', 'sum_2', 'sum_1', 'z'], \
['y0_1', 'x0_1', 'sum_4', 'sum_3', 'z_1'], ['y0_2', 'x0_2', 'sum_6', 'sum_5', 'z_2']]]""",
)
def test_get_regions_multiple_region_groups(self):
def inner_fn(x, y):
x1 = x + 1
y1 = y + 2
z = x1.sum() + y1.sum()
return z
def inner_fn2(a, b):
a += 2
b += 3
c = a * b.cos().sum()
return c
def fn(x, y):
x0 = torch.cos(x)
y0 = torch.sin(y)
o1 = inner_fn2(x0, y0)
o0 = inner_fn(x, y)
o1 = torch.sin(o0)
o2 = inner_fn(x, y0)
o2 = inner_fn2(x0, y0)
o3 = inner_fn(x, y)
return o1 * o2 + o3
self.assertExpectedInline(
self.get_result(
fn,
torch.rand(10, 10),
torch.ones(10, 20),
),
"""[[['y1', 'x1', 'sum_3', 'sum_2', 'z'], ['y1_1', 'x1_1', 'sum_5', 'sum_4', 'z_1'], \
['y1_2', 'x1_2', 'sum_8', 'sum_7', 'z_2']], [['b', 'cos_1', 'sum_1', 'a', 'c'], ['b_1', 'cos_2', 'sum_6', 'a_1', 'c_1']]]""",
)
def test_no_single_node_regions(self):
def inner_fn(x):
return x + 1
def fn(x):
o0 = inner_fn(x)
o1 = inner_fn(x)
o2 = inner_fn(x)
return o0 + o1 + o2
self.assertExpectedInline(self.get_result(fn, torch.ones(10, 10)), """[]""")
def test_mismatched_arg_shapes(self):
def inner_fn(x, y):
x1 = x + 1
y1 = y + 2
z = x1.sum() + y1.sum()
return z
def inner_fn2(a, b):
a += 2
b += 3
c = a * b.cos().sum()
return c
def fn(x, y):
x0 = torch.cos(x)
y0 = torch.sin(y)
o1 = inner_fn2(x0, y0)
o0 = inner_fn(x, o1)
o1 = torch.sin(o0)
o2 = inner_fn(x, y0)
o2 = inner_fn2(o2, y0)
o3 = inner_fn(x, y)
return o1 * o2 + o3
self.assertExpectedInline(
self.get_result(
fn,
torch.rand(10, 10),
torch.ones(10, 20),
),
"""[[['y1_1', 'sum_5'], ['y1_2', 'sum_8']], [['x1', 'sum_2', 'z'], ['x1_1', 'sum_4', 'z_1'], \
['x1_2', 'sum_7', 'z_2']], [['b', 'cos_1', 'sum_1'], ['b_1', 'cos_2', 'sum_6']]]""",
)
def test_mismatched_dtypes(self):
def inner_fn(x, y):
x1 = x * 1
y1 = y + 1
return x1 + y1.sum()
def fn(x, y):
x0 = torch.sin(x)
y0 = torch.cos(y)
o0 = inner_fn(x0, y0)
o2 = inner_fn(x0, y0)
o4 = inner_fn(x0, y0)
o5 = inner_fn(x0, y0)
o1 = inner_fn(x0.to(torch.bfloat16), y0.to(torch.bfloat16))
o3 = o1 + o2
return o3 * o0 + o4 + o5
self.assertExpectedInline(
self.get_result(
fn,
torch.rand(10, 10),
torch.ones(10, 20),
),
"""[[['y1', 'sum_1', 'x1', 'o0'], ['y1_1', 'sum_2', 'x1_1', 'o2'], \
['y1_2', 'sum_3', 'x1_2', 'o4'], ['y1_3', 'sum_4', 'x1_3', 'o5']]]""",
)
def test_nested_args(self):
def inner_fn(xs, ys):
out = torch._foreach_add(xs, ys)
return out[0] + out[1].sum()
def fn(x, y, z):
x0 = torch.sin(x)
y0 = torch.cos(y)
z0 = torch.sin(z)
o0 = inner_fn([x0, z0], [x0, y0])
o2 = inner_fn([x0, z0], [x0, y0])
o4 = inner_fn([x0, z0], [x0, y0])
o5 = inner_fn([x0, z0], [x0, y0])
o1 = inner_fn(
[x0.to(torch.bfloat16), z0.to(torch.bfloat16)],
[x0.to(torch.bfloat16), y0.to(torch.bfloat16)],
)
o3 = o1 + o2
return o3 * o0 + o4 + o5
self.assertExpectedInline(
self.get_result(
fn,
torch.rand(10, 10),
torch.rand(10, 20),
torch.ones(10, 20),
),
"""[[['getitem_1', '_foreach_add', 'sum_1', 'getitem', 'o0'], ['getitem_3', \
'_foreach_add_1', 'sum_2', 'getitem_2', 'o2'], ['getitem_5', '_foreach_add_2',\
'sum_3', 'getitem_4', 'o4'], ['getitem_7', '_foreach_add_3', 'sum_4', 'getitem_6', 'o5']]]""",
)
def test_mismatched_global_state(self):
def inner_fn(x, y):
x1 = x * 1
y1 = y + 1
return x1 + y1.sum()
def fn(x, y, c):
x0 = torch.sin(x)
y0 = torch.cos(y)
o4 = inner_fn(x0, y0)
o5 = inner_fn(x0, y0)
if isinstance(c, tuple):
c[0]()
o0 = inner_fn(x0, y0)
o2 = inner_fn(x0, y0)
c[1]()
else:
with c():
o0 = inner_fn(x0, y0)
o2 = inner_fn(x0, y0)
return o0 + o2 + o4 + o5
def create_toggle_fns(property):
old_value = getattr(torch.backends.cuda.matmul, property)
def toggle_property():
setattr(torch.backends.cuda.matmul, property, not old_value)
def reset_property():
setattr(torch.backends.cuda.matmul, property, old_value)
return toggle_property, reset_property
old_dtype = torch.get_default_dtype()
def set_default_dtype_bfloat16():
torch.set_default_dtype(torch.bfloat16)
def reset_default_dtype():
torch.set_default_dtype(old_dtype)
for ctx in [
lambda: torch.set_grad_enabled(False),
torch.autograd.grad_mode.inference_mode,
lambda: torch.autograd.graph.disable_saved_tensors_hooks(
"This is not supported"
),
# lambda: torch.set_num_threads(2), : Unsupported
(set_default_dtype_bfloat16, reset_default_dtype),
(
lambda: torch.use_deterministic_algorithms(True),
lambda: torch.use_deterministic_algorithms(False),
),
# (lambda: torch.use_deterministic_algorithms(True, warn_only=True),
# lambda: torch.use_deterministic_algorithms(False)), : Unsupported
create_toggle_fns("allow_bf16_reduced_precision_reduction"),
create_toggle_fns("allow_fp16_reduced_precision_reduction"),
create_toggle_fns("allow_tf32"),
]:
self.assertExpectedInline(
self.get_result(fn, torch.rand(10, 10), torch.ones(10, 20), ctx),
"""[[['y1_2', 'sum_3', 'x1_2', 'o0'], ['y1_3', 'sum_4', 'x1_3', 'o2']], \
[['y1', 'sum_1', 'x1', 'o4'], ['y1_1', 'sum_2', 'x1_1', 'o5']]]""",
)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|