1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
# Owner(s): ["module: dynamo"]
# flake8: noqa
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._dynamo.testing
from torch._dynamo.testing import (
CompileCounter,
CompileCounterWithBackend,
EagerAndRecordGraphs,
normalize_gm,
)
class TestInputAttrTracking(torch._dynamo.test_case.TestCase):
def test_tensor_property_on_tensor(self):
def fn(x):
return x * x.y
x_ = torch.randn([2, 2])
y_ = torch.randn([2, 2])
x_.y = y_
eager_result = fn(x_)
graph = None
def grab_graph_backend(gm, inps):
nonlocal graph
graph = gm
return gm
fn = torch.compile(fn, backend=grab_graph_backend, fullgraph=True)
compile_result = fn(x_)
self.assertEqual(eager_result, compile_result)
placeholder_cnt = 0
for node in graph.graph.nodes:
if node.op == "placeholder":
placeholder_cnt += 1
# We want to be very sure that this lifts y to inputs!
self.assertEqual(placeholder_cnt, 2)
def test_tensor_property_assigned_on_tensor(self):
def fn(x, y):
x.y = y
return x * x.y
x_ = torch.randn([2, 2])
y_ = torch.randn([2, 2])
eager_result = fn(x_, y_)
graph = None
def grab_graph_backend(gm, inps):
nonlocal graph
graph = gm
return gm
fn = torch.compile(fn, backend=grab_graph_backend, fullgraph=True)
compile_result = fn(x_, y_)
self.assertEqual(eager_result, compile_result)
placeholder_cnt = 0
for node in graph.graph.nodes:
if node.op == "placeholder":
placeholder_cnt += 1
# y is already an input
self.assertEqual(placeholder_cnt, 2)
def test_const_property_on_tensor(self):
def fn(x):
return x * x.y
x_ = torch.randn([2, 2])
y_ = 4
x_.y = y_
eager_result = fn(x_)
graph = None
def grab_graph_backend(gm, inps):
nonlocal graph
graph = gm
return gm
fn = torch.compile(fn, backend=grab_graph_backend, fullgraph=True)
compile_result = fn(x_)
self.assertEqual(eager_result, compile_result)
placeholder_cnt = 0
for node in graph.graph.nodes:
if node.op == "placeholder":
placeholder_cnt += 1
# We want to be very sure that this does not lifts y to inputs, as its a const
self.assertEqual(placeholder_cnt, 1)
def test_const_property_assigned_on_tensor(self):
def fn(x, y):
x.y = y
return x * x.y
x_ = torch.randn([2, 2])
y_ = 4
eager_result = fn(x_, y_)
fn = torch.compile(fn, backend="eager", fullgraph=True)
compile_result = fn(x_, y_)
self.assertEqual(eager_result, compile_result)
def test_guards_correctly_property_assigned_on_tensor_type_change(self):
def fn(x, y):
x.y = y
return x * x.y
x_ = torch.randn([2, 2])
fn = torch.compile(fn, backend="eager", fullgraph=True)
compile_result_const = fn(x_, 4)
self.assertEqual(compile_result_const, x_ * 4)
y = torch.randn([2, 2])
compile_result_tensor = fn(x_, y)
self.assertEqual(compile_result_tensor, x_ * y)
def test_guards_correctly_property_assigned_on_tensor_type_change_inductor(self):
def fn(x, y):
x.y = y
return x * x.y
x_ = torch.randn([2, 2])
fn = torch.compile(fn, backend="inductor", fullgraph=True)
compile_result_const = fn(x_, 4)
self.assertEqual(compile_result_const, x_ * 4)
y = torch.randn([2, 2])
compile_result_tensor = fn(x_, y)
self.assertEqual(compile_result_tensor, x_ * y)
def test_complex_attr_access_without_graph_breaks(self):
def fn(x, y, z):
for t in x:
t.y = y
t.z = y * z
new_y = 1
new_z = 1
for t in x:
new_y = t.y * new_y
new_z = t.z * new_z
return new_y, new_z
x_0 = torch.randn([2, 2])
x_1 = torch.randn([2, 2])
x_2 = torch.randn([2, 2])
x = [x_0, x_1, x_2]
y = torch.randn([2, 2])
z = 5
eager_result = fn(x, y, z)
counter = CompileCounter()
fn = torch.compile(fn, backend=counter, fullgraph=True)
compile_result = fn(x, y, z)
self.assertEqual(compile_result, eager_result)
self.assertEqual(counter.frame_count, 1)
self.assertEqual(counter.op_count, 9)
# Graph for reference
# ------------- ------ ----------------------- ------------------------------------ --------
# placeholder l_y_ L_y_ () {}
# call_function mul <built-in function mul> (l_y_, 5) {}
# call_function mul_1 <built-in function mul> (l_y_, 5) {}
# call_function mul_2 <built-in function mul> (l_y_, 5) {}
# call_function mul_3 <built-in function mul> (l_y_, 1) {}
# call_function mul_4 <built-in function mul> (mul, 1) {}
# call_function mul_5 <built-in function mul> (l_y_, mul_3) {}
# call_function mul_6 <built-in function mul> (mul_1, mul_4) {}
# call_function mul_7 <built-in function mul> (l_y_, mul_5) {}
# call_function mul_8 <built-in function mul> (mul_2, mul_6) {}
# output output output ((mul_7, mul_8, mul, mul_1, mul_2),) {}
def test_complex_attr_access_with_graph_breaks(self):
def fn(x, y, z):
for t in x:
t.y = y
t.z = y * z
print("Break!")
new_y = 1
new_z = 1
for t in x:
new_y = t.y * new_y
new_z = t.z * new_z
return new_y, new_z
x_0 = torch.randn([2, 2])
x_1 = torch.randn([2, 2])
x_2 = torch.randn([2, 2])
x = [x_0, x_1, x_2]
y = torch.randn([2, 2])
z = 5
eager_result = fn(x, y, z)
counter = CompileCounter()
fn = torch.compile(fn, backend=counter, fullgraph=False)
compile_result = fn(x, y, z)
self.assertEqual(compile_result, eager_result)
self.assertEqual(counter.frame_count, 2)
self.assertEqual(counter.op_count, 9)
# Graph for reference
# ------------- ------ ----------------------- ---------------------- --------
# placeholder l_y_ L_y_ () {}
# call_function mul <built-in function mul> (l_y_, 5) {}
# call_function mul_1 <built-in function mul> (l_y_, 5) {}
# call_function mul_2 <built-in function mul> (l_y_, 5) {}
# output output output ((mul, mul_1, mul_2),) {}
# [GRAPH BREAK!]
# ------------- ------- ----------------------- ----------------- --------
# placeholder l_x_0_y L_x_0_y () {}
# placeholder l_x_0_z L_x_0_z () {}
# placeholder l_x_1_y L_x_1_y () {}
# placeholder l_x_1_z L_x_1_z () {}
# placeholder l_x_2_y L_x_2_y () {}
# placeholder l_x_2_z L_x_2_z () {}
# call_function mul <built-in function mul> (l_x_0_y, 1) {}
# call_function mul_1 <built-in function mul> (l_x_0_z, 1) {}
# call_function mul_2 <built-in function mul> (l_x_1_y, mul) {}
# call_function mul_3 <built-in function mul> (l_x_1_z, mul_1) {}
# call_function mul_4 <built-in function mul> (l_x_2_y, mul_2) {}
# call_function mul_5 <built-in function mul> (l_x_2_z, mul_3) {}
# output output output ((mul_4, mul_5),) {}
def test_complex_attr_access_with_inline_reconstruct(self):
def inline_test_fn(x, y, z):
print("f")
return x.a + y.a + z.a
def fn(x, y, z):
x.a = 1
y.a = 2
z.a = 3
mult = inline_test_fn(x, y, z)
y = y * mult
x = x * mult
return x, y
x = torch.randn([2, 2])
y = torch.randn([2, 2])
z = torch.randn([2, 2])
eager_result = fn(x, y, z)
counter = CompileCounter()
fn = torch.compile(fn, backend=counter, fullgraph=False)
compile_result = fn(x, y, z)
self.assertEqual(compile_result, eager_result)
self.assertEqual(counter.frame_count, 1)
self.assertEqual(counter.op_count, 2)
# Graph for reference
# __compiled_fn_2 <eval_with_key>.0 opcode name target args kwargs
# ------------- ------ ----------------------- --------------- --------
# placeholder l_x_ L_x_ () {}
# placeholder l_y_ L_y_ () {}
# call_function mul <built-in function mul> (l_y_, 6) {}
# call_function mul_1 <built-in function mul> (l_x_, 6) {}
# output output output ((mul_1, mul),) {}
def test_set_data_on_input_tensor(self):
def fn(x, y):
x.data = y.data
if x.size() == y.size():
return x * y
else:
return y * y
x = torch.randn([5, 5])
y = torch.randn([2, 2])
eager_result = fn(x, y)
eager_and_record = EagerAndRecordGraphs()
counter = CompileCounterWithBackend(eager_and_record)
fn = torch.compile(fn, backend=counter, fullgraph=True)
compile_result = fn(x, y)
graph = eager_and_record.graphs[0]
actual = normalize_gm(graph.print_readable(False))
self.assertEqual(compile_result, eager_result)
self.assertEqual(counter.frame_count, 1)
self.assertEqual(counter.op_count, 6)
self.assertExpectedInline(
actual,
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_y_: "f32[2, 2]", L_x_: "f32[2, 2]"):
l_y_ = L_y_
l_x_ = L_x_
_get_data_attr: "f32[2, 2]" = torch._C._autograd._get_data_attr(l_y_)
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
set_: "f32[2, 2]" = torch_Tensor_set_(l_x_, _get_data_attr); _get_data_attr = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True); _set_grad_enabled_1 = None
_lower_version_count_by_1 = torch__dynamo_variables_builtin__lower_version_count_by_1(set_); set_ = _lower_version_count_by_1 = None
mul: "f32[2, 2]" = l_x_ * l_y_; l_x_ = l_y_ = None
return (mul,)
""",
)
# Note - this does not actually get captured in the graph yet.
# The plan of record is to introduce a set_data op, entirely subsume the operation into a call_function
# in the fx graph, and let aot_autograd handle it.
def test_set_data_on_scoped_tensor(self):
def fn(x):
z = torch.zeros([4, 4])
z.data = x.data
if x.size() == z.size():
return z * x
else:
return x
x = torch.randn([5, 5])
eager_result = fn(x)
counter = CompileCounter()
fn = torch.compile(fn, backend=counter, fullgraph=False)
compile_result = fn(x)
self.assertEqual(compile_result, eager_result)
self.assertEqual(counter.frame_count, 2)
self.assertEqual(counter.op_count, 3)
def test_set_data_on_user_defined_class_input_tensor(self):
class MyUserDefinedClass:
def __init__(self, x, y):
self.x = x
self.y = y
def do_some_setattr_stuff(self):
self.z = x * y
self.a = x + x
return self.z * self.a
x = torch.randn([5, 5])
y = torch.randn([5, 5])
mudc_1 = MyUserDefinedClass(x, y)
eager_result = mudc_1.do_some_setattr_stuff()
counter = CompileCounter()
mudc_2 = MyUserDefinedClass(x, y)
do_some_setattr_stuff = torch.compile(
mudc_2.do_some_setattr_stuff, backend=counter, fullgraph=True
)
compile_result = do_some_setattr_stuff()
self.assertEqual(compile_result, eager_result)
self.assertEqual(counter.frame_count, 1)
self.assertEqual(counter.op_count, 3)
# Graph for reference
# __compiled_fn_0 <eval_with_key>.0 opcode name target args kwargs
# ------------- ------ ----------------------- -------------------- --------
# placeholder l_x_ L_x_ () {}
# placeholder l_y_ L_y_ () {}
# call_function mul <built-in function mul> (l_x_, l_y_) {}
# call_function add <built-in function add> (l_x_, l_x_) {}
# call_function mul_1 <built-in function mul> (mul, add) {}
# output output output ((mul_1, mul, add),) {}
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|