1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
|
# Owner(s): ["module: dynamo"]
import contextlib
import functools
import logging
import os
import re
import unittest.mock
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch.distributed as dist
from torch._dynamo.testing import (
empty_line_normalizer,
extract_graph_and_tracker,
skipIfNotPy311,
)
from torch._dynamo.trace_rules import _as_posix_path
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_utils import (
find_free_port,
munge_exc,
skipIfTorchDynamo,
)
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.logging_utils import (
LoggingTestCase,
make_logging_test,
make_settings_test,
)
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
requires_distributed = functools.partial(
unittest.skipIf, not dist.is_available(), "requires distributed"
)
def munge_shape_guards(s: str) -> str:
def munge(s):
return re.sub(r"[^ ]+:\d+ in [^ ]+", "#:# in #", s)
return "\n".join([munge(l) for l in s.splitlines() if "LAMBDA_GUARD" in l])
def example_fn(a):
output = a.mul(torch.ones(1000, 1000))
output = output.add(torch.ones(1000, 1000))
return output
def dynamo_error_fn(a):
output = a.mul(torch.ones(1000, 1000))
output = output.add(torch.ones(10, 10))
return output
def inductor_error_fn(a):
output = torch.round(a)
return output
def inductor_schedule_fn(a):
output = a.add(torch.ones(1000, 1000, device="cuda"))
return output
ARGS = (torch.ones(1000, 1000, requires_grad=True),)
def multi_record_test(num_records, **kwargs):
@make_logging_test(**kwargs)
def fn(self, records):
fn_opt = torch.compile(example_fn, backend="inductor")
fn_opt(*ARGS)
self.assertEqual(len(records), num_records)
return fn
def within_range_record_test(num_records_lower, num_records_higher, **kwargs):
@make_logging_test(**kwargs)
def fn(self, records):
fn_opt = torch.compile(example_fn, backend="inductor")
fn_opt(*ARGS)
self.assertGreaterEqual(len(records), num_records_lower)
self.assertLessEqual(len(records), num_records_higher)
return fn
def single_record_test(**kwargs):
return multi_record_test(1, **kwargs)
class LoggingTests(LoggingTestCase):
test_bytecode = multi_record_test(2, bytecode=True)
test_output_code = multi_record_test(3, output_code=True)
test_aot_graphs = multi_record_test(3, aot_graphs=True)
@requires_cuda
@make_logging_test(schedule=True)
def test_schedule(self, records):
fn_opt = torch.compile(inductor_schedule_fn, backend="inductor")
fn_opt(torch.ones(1000, 1000, device="cuda"))
self.assertGreater(len(records), 0)
self.assertLess(len(records), 5)
@requires_cuda
@make_logging_test(fusion=True)
def test_fusion(self, records):
fn_opt = torch.compile(inductor_schedule_fn, backend="inductor")
fn_opt(torch.ones(1000, 1000, device="cuda"))
self.assertGreater(len(records), 0)
self.assertLess(len(records), 8)
@requires_cuda
@make_logging_test(cudagraphs=True)
def test_cudagraphs(self, records):
fn_opt = torch.compile(mode="reduce-overhead")(inductor_schedule_fn)
fn_opt(torch.ones(1000, 1000, device="cuda"))
self.assertGreater(len(records), 0)
self.assertLess(len(records), 8)
@make_logging_test(recompiles=True)
def test_recompiles(self, records):
def fn(x, y):
return torch.add(x, y)
fn_opt = torch.compile(fn, backend="inductor")
fn_opt(torch.ones(1000, 1000), torch.ones(1000, 1000))
fn_opt(torch.ones(1000, 1000), 1)
self.assertGreater(len(records), 0)
test_dynamo_debug = within_range_record_test(30, 90, dynamo=logging.DEBUG)
test_dynamo_info = within_range_record_test(2, 10, dynamo=logging.INFO)
@skipIfTorchDynamo("too slow")
@make_logging_test(dynamo=logging.DEBUG)
def test_dynamo_debug_default_off_artifacts(self, records):
fn_opt = torch.compile(example_fn, backend="inductor")
fn_opt(torch.ones(1000, 1000))
self.assertEqual(len([r for r in records if ".__bytecode" in r.name]), 0)
self.assertEqual(len([r for r in records if ".__output_code" in r.name]), 0)
@make_logging_test()
def test_dynamo_error(self, records):
try:
fn_opt = torch.compile(dynamo_error_fn, backend="inductor")
fn_opt(*ARGS)
except Exception:
pass
record = self.getRecord(records, "WON'T CONVERT")
self.assertExpectedInline(
munge_exc(record.getMessage()),
"""\
WON'T CONVERT dynamo_error_fn test_logging.py line N
due to:
Traceback (most recent call last):
torch._dynamo.exc.TorchRuntimeError: Failed running call_method add(*(FakeTensor(..., size=(1000, 1000), grad_fn=<MulBackward0>), FakeTensor(..., size=(10, 10))), **{}):
Attempting to broadcast a dimension of length 10 at -1! Mismatching argument at index 1 had torch.Size([10, 10]); but expected shape should be broadcastable to [1000, 1000]
from user code:
File "test_logging.py", line N, in dynamo_error_fn
output = output.add(torch.ones(10, 10))""", # noqa: B950
)
test_aot = within_range_record_test(2, 6, aot=logging.INFO)
test_inductor_debug = within_range_record_test(3, 22, inductor=logging.DEBUG)
test_inductor_info = within_range_record_test(2, 9, inductor=logging.INFO)
@make_logging_test()
def test_inductor_error(self, records):
exitstack = contextlib.ExitStack()
import torch._inductor.lowering
def throw(x):
raise AssertionError
# inject an error in the lowerings
dict_entries = {}
for x in list(torch._inductor.lowering.lowerings.keys()):
if "round" in x.__name__:
dict_entries[x] = throw
exitstack.enter_context(
unittest.mock.patch.dict(torch._inductor.lowering.lowerings, dict_entries)
)
try:
fn_opt = torch.compile(inductor_error_fn, backend="inductor")
fn_opt(*ARGS)
except Exception:
pass
record = self.getRecord(records, "WON'T CONVERT")
self.assertExpectedInline(
munge_exc(record.getMessage()),
"""\
WON'T CONVERT inductor_error_fn test_logging.py line N
due to:
Traceback (most recent call last):
File "test_logging.py", line N, in throw
raise AssertionError
torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised:
LoweringException: AssertionError:
target: aten.round.default
args[0]: TensorBox(StorageBox(
InputBuffer(name='primals_1', layout=FixedLayout('cpu', torch.float32, size=[1000, 1000], stride=[1000, 1]))
))""",
)
exitstack.close()
@requires_distributed()
@requires_cuda
@make_logging_test(ddp_graphs=True)
def test_ddp_graphs(self, records):
class ToyModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.layers = torch.nn.Sequential(
torch.nn.Linear(1024, 1024),
torch.nn.Linear(1024, 1024),
)
def forward(self, x):
return self.layers(x)
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(find_free_port())
dist.init_process_group("gloo", rank=0, world_size=1)
model = DDP(ToyModel().to("cuda:0"), device_ids=[0], bucket_cap_mb=4)
ddp_model = torch.compile(model, backend="inductor")
ddp_model(torch.randn(1024, 1024, device="cuda:0"))
dist.destroy_process_group()
self.assertEqual(len([r for r in records if "__ddp_graphs" in r.name]), 4)
# check that logging to a child log of a registered logger
# does not register it and result in duplicated records
@make_settings_test("torch._dynamo.output_graph")
def test_open_registration_with_registered_parent(self, records):
logger = logging.getLogger("torch._dynamo.output_graph")
logger.info("hi")
self.assertEqual(len(records), 1)
# check logging to a random log that is not a child log of a registered
# logger registers it and sets handlers properly
@make_settings_test("torch.utils")
def test_open_registration(self, records):
logger = logging.getLogger("torch.utils")
logger.info("hi")
self.assertEqual(len(records), 1)
# check logging to a random log that is not a child log of a registered
# logger registers it and sets handlers properly
@make_logging_test(modules={"torch.utils": logging.INFO})
def test_open_registration_python_api(self, records):
logger = logging.getLogger("torch.utils")
logger.info("hi")
self.assertEqual(len(records), 1)
@make_logging_test(all=logging.DEBUG, dynamo=logging.INFO)
def test_all(self, _):
registry = torch._logging._internal.log_registry
dynamo_qnames = registry.log_alias_to_log_qnames["dynamo"]
for logger_qname in torch._logging._internal.log_registry.get_log_qnames():
logger = logging.getLogger(logger_qname)
# if logger_qname is a.b.c and dynamo_qnames contains a.b, it still matches dynamo's INFO setting
if any(logger_qname.find(d) == 0 for d in dynamo_qnames):
self.assertEqual(
logger.getEffectiveLevel(),
logging.INFO,
msg=f"expected {logger_qname} is INFO, got {logging.getLevelName(logger.getEffectiveLevel())}",
)
else:
self.assertEqual(
logger.getEffectiveLevel(),
logging.DEBUG,
msg=f"expected {logger_qname} is DEBUG, got {logging.getLevelName(logger.getEffectiveLevel())}",
)
@make_logging_test(graph_breaks=True)
def test_graph_breaks(self, records):
@torch.compile(backend="inductor")
def fn(x):
torch._dynamo.graph_break()
return x + 1
fn(torch.ones(1))
self.assertEqual(len(records), 1)
@make_settings_test("torch._dynamo.utils")
def test_dump_compile_times(self, records):
fn_opt = torch.compile(example_fn, backend="inductor")
fn_opt(torch.ones(1000, 1000))
# This function runs during exit via atexit.register.
# We're not actually going to run atexit._run_exit_funcs() here,
# because it'll destroy state necessary for other tests.
torch._dynamo.utils.dump_compile_times()
self.assertEqual(
len(
[r for r in records if "TorchDynamo compilation metrics" in str(r.msg)]
),
1,
)
@make_logging_test(dynamo=logging.INFO)
def test_custom_format_exc(self, records):
dynamo_log = logging.getLogger(torch._dynamo.__name__)
try:
raise RuntimeError("foo")
except RuntimeError:
dynamo_log.exception("test dynamo")
dynamo_log.info("with exc", exc_info=True)
dynamo_log.info("with stack", stack_info=True)
self.assertEqual(len(records), 3)
# unfortunately there's no easy way to test the final formatted log other than
# to ask the dynamo logger's handler to format it.
for handler in dynamo_log.handlers:
if torch._logging._internal._is_torch_handler(handler):
break
self.assertIsNotNone(handler)
self.assertIn("Traceback", handler.format(records[0]))
self.assertIn("Traceback", handler.format(records[1]))
self.assertIn("Stack", handler.format(records[2]))
@make_logging_test(dynamo=logging.INFO)
def test_custom_format(self, records):
dynamo_log = logging.getLogger(torch._dynamo.__name__)
test_log = torch._logging.getArtifactLogger(
torch._dynamo.__name__, "custom_format_test_artifact"
)
dynamo_log.info("test dynamo")
test_log.info("custom format")
self.assertEqual(len(records), 2)
# unfortunately there's no easy way to test the final formatted log other than
# to ask the dynamo logger's handler to format it.
for handler in dynamo_log.handlers:
if torch._logging._internal._is_torch_handler(handler):
break
self.assertIsNotNone(handler)
self.assertIn("I", handler.format(records[0]))
self.assertEqual("custom format", handler.format(records[1]))
@make_logging_test(dynamo=logging.INFO)
def test_multiline_format(self, records):
dynamo_log = logging.getLogger(torch._dynamo.__name__)
dynamo_log.info("test\ndynamo")
dynamo_log.info("%s", "test\ndynamo")
dynamo_log.info("test\n%s", "test\ndynamo")
self.assertEqual(len(records), 3)
# unfortunately there's no easy way to test the final formatted log other than
# to ask the dynamo logger's handler to format it.
for handler in dynamo_log.handlers:
if torch._logging._internal._is_torch_handler(handler):
break
self.assertIsNotNone(handler)
for record in records:
r = handler.format(record)
for l in r.splitlines():
self.assertIn("I", l)
test_trace_source_simple = within_range_record_test(1, 100, trace_source=True)
@make_logging_test(trace_source=True)
def test_trace_source_if_stmt(self, records):
def fn(x):
if x.sum() > 0:
return x * 2
return x * 3
fn_opt = torch.compile(fn, backend="eager")
fn_opt(torch.ones(3, 3))
found_x2 = False
found_x3 = False
for record in records:
msg = record.getMessage()
if "return x * 2" in msg:
found_x2 = True
if "return x * 3" in msg:
found_x3 = True
self.assertTrue(found_x2)
self.assertFalse(found_x3)
@make_logging_test(trace_source=True)
def test_trace_source_nested(self, records):
def fn1(x):
x = fn2(x)
return x * 2
def fn2(x):
x = fn3(x)
return x * 3
def fn3(x):
return x * 4
fn_opt = torch.compile(fn1, backend="eager")
fn_opt(torch.ones(3, 3))
found_x2 = False
found_x3 = False
found_x4 = False
for record in records:
msg = record.getMessage()
if "return x * 2" in msg:
found_x2 = True
self.assertNotIn("inline depth", msg)
elif "return x * 3" in msg:
found_x3 = True
self.assertIn("inline depth: 1", msg)
elif "return x * 4" in msg:
found_x4 = True
self.assertIn("inline depth: 2", msg)
self.assertTrue(found_x2)
self.assertTrue(found_x3)
self.assertTrue(found_x4)
@make_logging_test(trace_source=True)
def test_trace_source_cond(self, records):
from functorch.experimental.control_flow import cond
def true_fn(x):
return x * 2
def false_fn(x):
return x * 3
def inner(pred, x):
return cond(pred, true_fn, false_fn, [x])
def outer(pred, x):
return inner(pred, x)
fn_opt = torch.compile(outer, backend="eager")
fn_opt(torch.tensor(True), torch.ones(3, 3))
found_x2 = False
found_x3 = False
for record in records:
msg = record.getMessage()
if "return x * 2" in msg:
found_x2 = True
self.assertIn("inline depth: 3", msg)
if "return x * 3" in msg:
found_x3 = True
self.assertIn("inline depth: 3", msg)
self.assertTrue(found_x2)
self.assertTrue(found_x3)
@make_logging_test(trace_source=True)
def test_trace_source_funcname(self, records):
# NOTE: list comprehensions are inlined in 3.12, so test with tuples
def fn1():
def fn2():
if True:
return tuple(torch.ones(3, 3) for _ in range(5))
return None
return fn2()
fn_opt = torch.compile(fn1, backend="eager")
fn_opt()
found_funcname = False
for record in records:
msg = record.getMessage()
if "<genexpr>" in msg and "fn1.fn2" in msg:
found_funcname = True
self.assertTrue(found_funcname)
def test_invalid_artifact_flag(self):
with self.assertRaises(ValueError):
torch._logging.set_logs(aot_graphs=5)
@requires_distributed()
def test_distributed_rank_logging(self):
env = dict(os.environ)
env["TORCH_LOGS"] = "dynamo"
stdout, stderr = self.run_process_no_exception(
"""\
import torch.distributed as dist
import logging
from torch.testing._internal.distributed.fake_pg import FakeStore
store = FakeStore()
dist.init_process_group("fake", rank=0, world_size=2, store=store)
dynamo_log = logging.getLogger("torch._dynamo")
dynamo_log.info("woof")
print("arf")
""",
env=env,
)
self.assertIn("[rank0]:", stderr.decode("utf-8"))
@skipIfNotPy311
@make_logging_test(trace_call=True)
def test_trace_call(self, records):
def fn(x, y):
return (x * 2) @ (y * 3)
fn_opt = torch.compile(fn, backend="eager")
fn_opt(torch.randn(10, 20), torch.randn(20, 30))
self.assertEqual(len(records), 3)
# only get last 2 lines
messages = [
"\n".join(record.getMessage().split("\n")[-2:]) for record in records
]
self.assertExpectedInline(
messages[0],
"""\
return (x * 2) @ (y * 3)
~~^~~""",
)
self.assertExpectedInline(
messages[1],
"""\
return (x * 2) @ (y * 3)
~~^~~""",
)
self.assertExpectedInline(
messages[2],
"""\
return (x * 2) @ (y * 3)
~~~~~~~~^~~~~~~~~""",
)
@skipIfNotPy311
@make_logging_test(trace_call=True)
def test_trace_call_prefix(self, records):
def fn(x, y):
return (x * 2) @ (y * 3)
fn_opt = torch.compile(fn, backend="eager")
fn_opt(torch.randn(10, 20), torch.randn(20, 30))
msg0 = munge_exc(records[0].getMessage())
self.assertExpectedInline(
msg0,
"""\
TRACE FX call mul from test_logging.py:N in fn (LoggingTests.test_trace_call_prefix.fn)
return (x * 2) @ (y * 3)
~~^~~""",
)
@skipIfNotPy311
@make_logging_test(trace_call=True)
def test_trace_call_inline_call(self, records):
def g(x):
return x * 2
def f(x):
return g(g(x))
fn_opt = torch.compile(f, backend="eager")
fn_opt(torch.randn(3, 3))
self.assertEqual(len(records), 4)
messages = [
"\n".join(record.getMessage().split("\n")[-2:]) for record in records
]
self.assertExpectedInline(
messages[0],
"""\
return g(g(x))
~^^^""",
)
self.assertExpectedInline(
messages[1],
"""\
return x * 2
~~^~~""",
)
# skip this check since 3.13 removed carets for this case
# see https://github.com/python/cpython/issues/99180
# self.assertExpectedInline(
# messages[2],
# """\
# return g(g(x))
# ~^^^^^^""",
# )
self.assertExpectedInline(
messages[3],
"""\
return x * 2
~~^~~""",
)
@skipIfNotPy311
@make_logging_test(trace_call=True)
def test_trace_call_graph_break(self, records):
def fn(x):
x = x * 2
torch._dynamo.graph_break()
return x * 3
fn_opt = torch.compile(fn, backend="eager")
fn_opt(torch.randn(3, 3))
self.assertEqual(len(records), 3)
messages = [
"\n".join(record.getMessage().split("\n")[-2:]) for record in records
]
self.assertExpectedInline(
messages[0],
"""\
x = x * 2
~~^~~""",
)
self.assertExpectedInline(
messages[-1],
"""\
return x * 3
~~^~~""",
)
@make_logging_test(guards=True, recompiles=True)
def test_guards_recompiles(self, records):
def fn(x, ys, zs):
return inner(x, ys, zs)
def inner(x, ys, zs):
for y, z in zip(ys, zs):
x += y * z
return x
ys = [1.0, 2.0]
zs = [3.0]
x = torch.tensor([1.0])
fn_opt = torch.compile(fn, backend="eager")
fn_opt(x, ys, zs)
fn_opt(x, ys[:1], zs)
record_str = "\n".join(r.getMessage() for r in records)
self.assertIn(
"""L['zs'][0] == 3.0""",
record_str,
)
self.assertIn(
"len(L['ys']) == 2",
record_str,
)
@make_logging_test(guards=True)
def test_guards_sloc(self, records):
@torch.compile(dynamic=True, backend="eager")
def f(x, y, z):
x = x * 3
if x.size(0) % 3 == 0:
return x + torch.cat([y, z])
else:
return x * 2
f(torch.randn(6), torch.randn(3), torch.randn(3))
record = self.getRecord(records, "TREE_GUARD_MANAGER")
self.assertExpectedInline(
munge_shape_guards(record.getMessage()),
"""\
+- LAMBDA_GUARD: L['x'].size()[0] == 2*L['z'].size()[0] # return x + torch.cat([y, z]) # #:# in # #:# in #
+- LAMBDA_GUARD: L['y'].size()[0] == L['z'].size()[0] # duck sizing added this equality because these variables had the same size 3 (to avoid this specialization, set torch.fx.experimental._config.use_duck_shape = False)
+- LAMBDA_GUARD: ((2*L['z'].size()[0]) % 3) == 0 # if x.size(0) % 3 == 0: # #:# in # #:# in #
+- LAMBDA_GUARD: 2 <= L['z'].size()[0] # return x + torch.cat([y, z]) # #:# in # (user code shown is first use of this value--the guard itself is not due user code but due to 0/1 specialization in the framework; to avoid specialization try torch._dynamo.mark_unbacked(tensor, dim))""", # noqa: B950
)
@make_logging_test(guards=True)
def test_guards_polyfill_sloc(self, records):
@torch.compile(dynamic=True, backend="eager")
def f(x, y):
return any([x.size(0) == y.size(0) * 2])
f(torch.randn(6), torch.randn(3))
record = self.getRecord(records, "TREE_GUARD_MANAGER")
self.assertExpectedInline(
munge_shape_guards(record.getMessage()),
"""\
+- LAMBDA_GUARD: L['x'].size()[0] == 2*L['y'].size()[0] # return any([x.size(0) == y.size(0) * 2]) # #:# in # #:# in #
+- LAMBDA_GUARD: 2 <= L['y'].size()[0] # return any([x.size(0) == y.size(0) * 2]) # #:# in # (user code shown is first use of this value--the guard itself is not due user code but due to 0/1 specialization in the framework; to avoid specialization try torch._dynamo.mark_unbacked(tensor, dim))""", # noqa: B950
)
@make_logging_test(guards=True)
def test_guards_sloc_vr(self, records):
@torch.compile(dynamic=True, backend="eager")
def f(x, y):
torch._check(x.size(0) > 5)
torch._check(x.size(0) < 30)
torch._check(x.size(0) == y.size(0) * 2)
return torch.tensor(True)
f(torch.randn(6), torch.randn(3))
record = self.getRecord(records, "TREE_GUARD_MANAGER")
self.assertExpectedInline(
munge_shape_guards(record.getMessage()),
"""\
+- LAMBDA_GUARD: L['x'].size()[0] == 2*L['y'].size()[0] # torch._check(x.size(0) == y.size(0) * 2) # #:# in # #:# in #
+- LAMBDA_GUARD: 3 <= L['y'].size()[0] # torch._check(x.size(0) > 5) # #:# in # #:# in #
+- LAMBDA_GUARD: L['y'].size()[0] <= 14 # torch._check(x.size(0) < 30) # #:# in # #:# in #""", # noqa: B950
)
@make_logging_test(cudagraph_static_inputs=True)
def test_cudagraph_static_inputs(self, records):
@torch.compile(mode="reduce-overhead")
def fn(x):
return x + 1
x = torch.ones(2, 2)
torch._dynamo.mark_static_address(x)
fn(x)
self.assertGreater(len(records), 0)
self.assertLess(len(records), 4)
@make_logging_test(perf_hints=True)
@requires_cuda
def test_optimizer_non_static_param(self, records):
params = [torch.randn(10, 10, device="cuda") for _ in range(2)]
for param in params:
param.grad = torch.zeros_like(param)
opt = torch.optim.Adam(params)
compiled_opt_step = torch.compile(opt.step, mode="reduce-overhead")
compiled_opt_step()
self.assertGreater(len(records), 0)
self.assertLess(len(records), 3)
@make_logging_test(graph_region_expansion=True)
def test_graph_region_expansion(self, records):
with torch._dynamo.config.patch("track_nodes_for_deduplication", True):
def inner_fn(x, y):
x0 = x + 1
y0 = y + 2
z = x0.sum() + y0.sum()
return z
def fn(x, y):
o0 = inner_fn(x, y)
o1 = torch.sin(o0)
o2 = inner_fn(x, o1)
o3 = inner_fn(x, y)
return o2 * o3 * o3
graph, tracker = extract_graph_and_tracker(
fn, torch.randn(10, 10), torch.randn(10, 10)
)
tracker.get_identical_regions(graph)
self.assertGreater(len(records), 0)
@skipIfTorchDynamo("too slow")
@make_logging_test(**torch._logging.DEFAULT_LOGGING)
def test_default_logging(self, records):
def fn(a):
if a.sum() < 0:
a = torch.sin(a)
else:
a = torch.cos(a)
print("hello")
return a + 1
fn_opt = torch.compile(fn, backend="eager")
fn_opt(torch.ones(10, 10))
fn_opt(-torch.ones(10, 5))
self.assertGreater(len([r for r in records if ".__graph_breaks" in r.name]), 0)
self.assertGreater(len([r for r in records if ".__recompiles" in r.name]), 0)
self.assertGreater(len([r for r in records if ".symbolic_shapes" in r.name]), 0)
self.assertGreater(len([r for r in records if ".__guards" in r.name]), 0)
self.assertGreater(
len([r for r in records if "return a + 1" in r.getMessage()]), 0
)
def test_logs_out(self):
import tempfile
with tempfile.NamedTemporaryFile(delete=False) as tmp:
file_path = _as_posix_path(tmp.name)
"""
NamedTemporaryFile will include a file open operation.
On Windowsm the file is opened by NamedTemporaryFile, the
following run_process_no_exception can't access a opened file.
And then, raise a PermissionError: [Errno 13] Permission denied: [file_path]
"""
tmp.close()
env = dict(os.environ)
env["TORCH_LOGS"] = "dynamo"
env["TORCH_LOGS_OUT"] = file_path
stdout, stderr = self.run_process_no_exception(
"""\
import torch
@torch.compile(backend="eager")
def fn(a):
return a.sum()
fn(torch.randn(5))
""",
env=env,
)
with open(
file_path, encoding="utf-8"
) as fd: # encoding file to UTF-8 for Windows.
lines = fd.read()
fd.close()
os.remove(
file_path
) # Delete temp file manually, due to setup NamedTemporaryFile as delete=False.
self.assertEqual( # process wrap difference: /r/n on Windows, /n on posix.
empty_line_normalizer(lines),
empty_line_normalizer(stderr.decode("utf-8")),
)
@make_settings_test("torch._dynamo.eval_frame")
def test_log_traced_frames(self, records):
# Test program
@torch.compile()
def foo():
x = torch.ones([10])
def bar():
y = x + x
torch._dynamo.graph_break()
z = y * x
return z
return bar(), bar
foo()
# `_log_traced_frames` is registered as an atexit callback, so we invoke
# it explicitly for testing.
torch._dynamo.eval_frame._log_traced_frames()
# Get the relevant log.
record = self.getRecord(records, "TorchDynamo attempted to trace")
# Check
self.assertExpectedInline(
munge_exc(record.getMessage()),
"""\
TorchDynamo attempted to trace the following frames: [
* foo test_logging.py:N
* bar test_logging.py:N
]""",
)
# single record tests
exclusions = {
"bytecode",
"cudagraphs",
"output_code",
"schedule",
"fusion",
"overlap",
"aot_graphs",
"aot_graphs_effects",
"post_grad_graphs",
"compiled_autograd",
"compiled_autograd_verbose",
"recompiles",
"recompiles_verbose",
"graph_breaks",
"graph",
"graph_code",
"graph_sizes",
"ddp_graphs",
"perf_hints",
"not_implemented",
"trace_source",
"trace_call",
"trace_bytecode",
"custom_format_test_artifact",
"onnx",
"onnx_diagnostics",
"guards",
"verbose_guards",
"sym_node",
"export",
"trace_shape_events",
"cudagraph_static_inputs",
"benchmarking",
"loop_ordering",
"graph_region_expansion",
}
for name in torch._logging._internal.log_registry.artifact_names:
if name not in exclusions:
setattr(LoggingTests, f"test_{name}", single_record_test(**{name: True}))
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|