File: test_modes.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (627 lines) | stat: -rw-r--r-- 18,983 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
# Owner(s): ["module: dynamo"]

import operator
from unittest.mock import patch

import torch
import torch._dynamo.test_case
import torch._dynamo.testing
from torch._C import (
    _len_torch_function_stack,
    _pop_torch_function_stack,
    _push_on_torch_function_stack,
)
from torch.overrides import _get_current_function_mode_stack, BaseTorchFunctionMode
from torch.testing._internal.triton_utils import requires_cuda
from torch.utils._device import DeviceContext
from torch.utils._python_dispatch import TorchDispatchMode


class TestMode(BaseTorchFunctionMode):
    def __torch_function__(self, func, types, args, kwargs=None):
        if not kwargs:
            kwargs = {}

        if func == torch.add:
            return torch.zeros(2, 2)

        return super().__torch_function__(func, types, args, kwargs)


class TorchDispatchModeTests(torch._dynamo.test_case.TestCase):
    @classmethod
    def setUpClass(cls):
        super().setUpClass()

    @classmethod
    def tearDownClass(cls):
        super().tearDownClass()

    def test_skip_torch_dispatch_modes(self):
        class RewriteAddToMul(TorchDispatchMode):
            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                if func is torch.ops.aten.add.Tensor:
                    func = torch.ops.aten.mul.Tensor
                return func(*args, **kwargs)

        def fn(x):
            return x + x

        cnt = torch._dynamo.testing.CompileCounter()

        x = torch.tensor([3.0])
        with RewriteAddToMul():
            eager_res = fn(x)
            compiled_res = torch.compile(fn, backend=cnt)(x)

        self.assertEqual(eager_res, compiled_res)
        self.assertEqual(cnt.frame_count, 0)


class TorchFunctionModeTests(torch._dynamo.test_case.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.default_device_old = torch.get_default_device()
        super().setUpClass()

    @classmethod
    def tearDownClass(cls):
        torch.set_default_device(cls.default_device_old)
        super().tearDownClass()

    def setUp(self):
        torch.set_default_device(None)
        torch._dynamo.reset()

    def tearDown(self):
        torch.set_default_device(None)
        torch._dynamo.reset()

    def _run_torch_function_mode_guard_test(self):
        class TestMode1(BaseTorchFunctionMode):
            pass

        class TestMode2(BaseTorchFunctionMode):
            pass

        cnt = torch._dynamo.testing.CompileCounter()

        @torch.compile(backend=cnt.__call__)
        def fn(x):
            return x + 1

        inp = torch.ones(2, 2)
        fn(inp)
        self.assertEqual(cnt.frame_count, 1)

        with TestMode1():
            fn(inp)
        self.assertEqual(cnt.frame_count, 2)

        with TestMode1(), TestMode2():
            fn(inp)
        self.assertEqual(cnt.frame_count, 3)

        with TestMode2(), TestMode1():
            fn(inp)
        self.assertEqual(cnt.frame_count, 4)

        with TestMode1():
            fn(inp)
        self.assertEqual(cnt.frame_count, 4)

    @torch._dynamo.config.patch("enable_cpp_guard_manager", False)
    def test_torch_function_mode_guards_py(self):
        self._run_torch_function_mode_guard_test()

    def test_torch_function_mode_guards_cpp(self):
        self._run_torch_function_mode_guard_test()

    def test_stack_state_mutation_default_device(self):
        m = BaseTorchFunctionMode()
        m1 = BaseTorchFunctionMode()
        with m, m1:

            @torch.compile(fullgraph=True)
            def fn(x):
                torch.set_default_device("cpu")
                _pop_torch_function_stack()

            fn(torch.ones(2, 2))
            _push_on_torch_function_stack(m1)

            stack = _get_current_function_mode_stack()
            self.assertIsInstance(stack[0], DeviceContext)
            self.assertEqual(stack[0].device, torch.device("cpu"))
            self.assertIs(stack[1], m)
            self.assertIs(stack[2], m1)

    def test_stack_state_clear_default_device(self):
        @torch.compile(fullgraph=True)
        def fn(x):
            torch.set_default_device(None)
            return x + 1

        fn(torch.ones(2, 2))
        stack = _get_current_function_mode_stack()
        self.assertEqual(len(stack), 0)

        m = BaseTorchFunctionMode()
        m1 = BaseTorchFunctionMode()

        # Stack populated, add device
        with m, m1:

            @torch.compile(fullgraph=True)
            def fn(x):
                torch.set_default_device("cpu")
                torch.set_default_device(None)
                torch.set_default_device("cpu")
                return x + 1

            fn(torch.ones(2, 2))
            stack = _get_current_function_mode_stack()
            self.assertEqual(stack[0].device, torch.device("cpu"))
            self.assertIs(stack[1], m)
            self.assertIs(stack[2], m1)

        # Stack populated, remove device
        torch.set_default_device("cpu")
        with m, m1:

            @torch.compile(fullgraph=True)
            def fn(x):
                torch.set_default_device(None)
                return x + 1

            fn(torch.ones(2, 2))
            stack = _get_current_function_mode_stack()
            self.assertIs(stack[0], m)
            self.assertIs(stack[1], m1)

        @torch.compile(fullgraph=True)
        def fn(x):
            torch.set_default_device("cpu")
            torch.set_default_device("cpu")
            return x + 1

        fn(torch.ones(2, 2))
        stack = _get_current_function_mode_stack()
        self.assertEqual(stack[0].device, torch.device("cpu"))
        torch.set_default_device(None)

    def test_pop_torch_function_mode(self):
        m = BaseTorchFunctionMode()
        with m:

            @torch.compile(fullgraph=True)
            def fn(x):
                _pop_torch_function_stack()
                return x + 1

            fn(torch.ones(2, 2))

            self.assertEqual(_len_torch_function_stack(), 0)
            # reset stack so __exit__ doesn't crash
            _push_on_torch_function_stack(m)

        self.assertEqual(_len_torch_function_stack(), 0)

    def test_error_empty_stack_pop_torch_function_mode(self):
        @torch.compile(fullgraph=True)
        def fn(x):
            _pop_torch_function_stack()
            return x + 1

        self.assertRaisesRegex(
            torch._dynamo.exc.Unsupported,
            "Popping from an empty torch function mode stack",
            lambda: fn(torch.ones(2, 2)),
        )

    def test_push_torch_function_mode(self):
        m = BaseTorchFunctionMode()
        with m:

            @torch.compile(fullgraph=True)
            def fn(x, m):
                _push_on_torch_function_stack(m)
                return x + 1

            fn(torch.ones(2, 2), m)

            self.assertEqual(_len_torch_function_stack(), 2)
            # reset stack state
            _pop_torch_function_stack()

        self.assertEqual(_len_torch_function_stack(), 0)

    def test_len_torch_function_mode(self):
        m = BaseTorchFunctionMode()
        with m:

            @torch.compile(fullgraph=True)
            def fn(x):
                z = _len_torch_function_stack()
                return x + z

            res = fn(torch.ones(2, 2))
            self.assertEqual(res, torch.ones(2, 2) + 1)
            self.assertEqual(_len_torch_function_stack(), 1)

    def test_intermedate_torch_function_mode_construction_mutation(self):
        class TestMode(BaseTorchFunctionMode):
            def __init__(self, x):
                self.x = x

        @torch.compile(fullgraph=True)
        def fn(x):
            z = TestMode(2)
            z.y = 2
            return x + 1, z

        fn(torch.ones(2, 2))

    def test_torch_function_mode_enabled_guard(self):
        cnt = torch._dynamo.testing.CompileCounter()
        inp = torch.ones(2, 2)

        @torch.compile(backend=cnt.__call__)
        def fn(x):
            return x + 1

        with BaseTorchFunctionMode(), torch._C.DisableTorchFunctionSubclass():
            with torch._C.DisableTorchFunction():
                fn(inp)
            fn(inp)
        self.assertEqual(cnt.frame_count, 2)

    def test_nested_torch_function_mode(self):
        mode_1_called = False
        mode_2_called = False

        def reset_state():
            nonlocal mode_1_called
            nonlocal mode_2_called
            mode_1_called = False
            mode_2_called = False

        ones = torch.ones(2, 2)
        zeros = torch.zeros(2, 2)

        class TestMode1(BaseTorchFunctionMode):
            def __torch_function__(self, func, types, args, kwargs=None):
                if not kwargs:
                    kwargs = {}

                nonlocal mode_1_called

                mode_1_called = True

                if func == torch.add:
                    return zeros

                return super().__torch_function__(func, types, args, kwargs)

        class TestMode2(BaseTorchFunctionMode):
            def __torch_function__(self, func, types, args, kwargs=None):
                if not kwargs:
                    kwargs = {}

                nonlocal mode_2_called

                mode_2_called = True

                if func == torch.mul:
                    return ones

                return super().__torch_function__(func, types, args, kwargs)

        def fn(x):
            return torch.add(x, 3)

        def fn_2(x):
            return torch.mul(x, 3) + torch.add(x, 3)

        inp = torch.ones(2, 2) + 1

        for fn_i in [fn, fn_2]:
            fn_opt = torch.compile(fn_i, fullgraph=True)
            with TestMode1(), TestMode2():
                expected = fn_i(inp), mode_1_called, mode_2_called
                reset_state()
                actual = fn_opt(inp), mode_1_called, mode_2_called
                reset_state()

            self.assertEqual(expected, actual)

    def test_torch_function_mode_disable(self):
        class TestSubclass(torch.Tensor):
            @classmethod
            def __torch_function__(cls, func, types, args, kwargs=None):
                if not kwargs:
                    kwargs = {}
                if func == torch.add:
                    return torch.ones(2, 2)
                return super().__torch_function__(func, types, args, kwargs)

        class TestMode(BaseTorchFunctionMode):
            def __torch_function__(self, func, types, args, kwargs=None):
                if not kwargs:
                    kwargs = {}

                if func == torch.add:
                    return torch.zeros(2, 2)

                return super().__torch_function__(func, types, args, kwargs)

        def fn(x):
            return torch.add(x, 3)

        inp = (torch.ones(2, 2) + 1).as_subclass(TestSubclass)

        fn_opt = torch.compile(fn, fullgraph=True)
        with TestMode(), torch._dynamo.config.patch(
            "traceable_tensor_subclasses", {TestSubclass}
        ):
            with torch._C.DisableTorchFunctionSubclass():
                expected = fn(inp)
                actual = fn_opt(inp)

            self.assertEqual(expected, actual)

            with torch._C.DisableTorchFunction():
                expected = fn(inp)
                actual = fn_opt(inp)

            self.assertEqual(expected, actual)

    def test_torch_function_mode_highest_priority(self):
        class TestSubclass(torch.Tensor):
            @classmethod
            def __torch_function__(cls, func, types, args, kwargs=None):
                if not kwargs:
                    kwargs = {}
                if func == torch.add:
                    return torch.ones(2, 2)
                return super().__torch_function__(func, types, args, kwargs)

        def fn(x):
            return torch.add(x, 3)

        inp = (torch.ones(2, 2) + 1).as_subclass(TestSubclass)

        fn_opt = torch.compile(fn, fullgraph=True)
        with TestMode(), torch._dynamo.config.patch(
            "traceable_tensor_subclasses", {TestSubclass}
        ):
            expected = fn(inp)
            actual = fn_opt(inp)

        self.assertEqual(expected, actual)

    def test_torch_function_mode_enter_exit(self):
        def fn(x, y):
            with TestMode():
                o = torch.add(x, 3)

            return torch.add(o, y)

        inp = (torch.ones(2, 2) + 1, torch.ones(2, 2) + 2)
        fn_opt = torch.compile(fn, fullgraph=True)

        expected = fn(*inp)
        actual = fn_opt(*inp)

        self.assertEqual(expected, actual)

    def test_torch_function_mode_graph_break(self):
        def fn(x, y):
            with TestMode():
                torch._dynamo.graph_break()
                o = torch.add(x, 3)

            return torch.add(o, y)

        inp = (torch.ones(2, 2) + 1, torch.ones(2, 2) + 2)
        fn_opt = torch.compile(fn)

        expected = fn(*inp)
        actual = fn_opt(*inp)

        self.assertEqual(expected, actual)

    def test_torch_function_mode_and_pop_graph_break(self):
        def fn(x, y):
            with TestMode():
                z = _pop_torch_function_stack()
                torch._dynamo.graph_break()
                _push_on_torch_function_stack(z)
                o = torch.add(x, 3)

            return torch.add(o, y)

        inp = (torch.ones(2, 2) + 1, torch.ones(2, 2) + 2)
        fn_opt = torch.compile(fn)

        expected = fn(*inp)
        actual = fn_opt(*inp)

        self.assertEqual(expected, actual)

    def test_torch_function_mode_restore_on_exc(self):
        @torch._dynamo.disable()
        def err():
            raise RuntimeError("test")

        @torch.compile()
        def fn(x):
            with TestMode():
                x += 1
                err()
                x += 2
                return x

        try:
            fn(torch.ones(2, 2))
        except RuntimeError:
            pass
        self.assertEqual(_len_torch_function_stack(), 0)

    def test_torch_function_mode_and_pop_graph_break_mutation(self):
        def fn(x, y):
            with TestMode():
                z = _pop_torch_function_stack()
                z.y = 5
                torch._dynamo.graph_break()
                _push_on_torch_function_stack(z)
                o = torch.add(x, 3)
                o = torch.mul(o, z.y)

            return torch.add(o, y)

        inp = (torch.ones(2, 2) + 1, torch.ones(2, 2) + 2)
        fn_opt = torch.compile(fn)

        expected = fn(*inp)
        actual = fn_opt(*inp)

        self.assertEqual(expected, actual)

    # Needs larger cache size since we recompile for each op
    @patch.object(torch._dynamo.config, "cache_size_limit", 48)
    def test_builtin_equivalent_funcs(self):
        from torch._dynamo.variables.torch_function import (
            bin_int_ops,
            bin_ops,
            BUILTIN_TO_TENSOR_FN_MAP,
            BUILTIN_TO_TENSOR_RFN_MAP,
            tensor_and_int_ops,
            un_int_ops,
            un_ops,
        )

        expected_func = None
        valid = False

        class FuncEquivMode(BaseTorchFunctionMode):
            def __torch_function__(self, func, types, args=(), kwargs=None):
                nonlocal expected_func
                nonlocal valid
                if not kwargs:
                    kwargs = {}
                if torch._dynamo.is_compiling():
                    valid = expected_func == func
                return super().__torch_function__(func, types, args, kwargs)

        inp0 = torch.ones(1, 1)
        inp1 = torch.ones(1, 1)
        inp0_int = torch.ones(1, 1, dtype=torch.int32)
        inp1_int = torch.ones(1, 1, dtype=torch.int32)

        @torch.compile(fullgraph=True)
        def fn_un(op, inp):
            return op(inp)

        @torch.compile(fullgraph=True)
        def fn_un_int(op, inp):
            return op(inp)

        @torch.compile(fullgraph=True)
        def fn_bin(op, inp0, inp1):
            return op(inp0, inp1)

        @torch.compile(fullgraph=True)
        def fn_bin_int(op, inp0, inp1):
            return op(inp0, inp1)

        @torch.compile(fullgraph=True)
        def fn_tensor_and_int(op, inp0, inp1):
            return op(inp0, inp1)

        setups_and_oplists = [
            (lambda o: fn_un(o, inp0), un_ops),
            (lambda o: fn_un_int(o, inp0_int), un_int_ops),
            (lambda o: fn_bin(o, inp0, inp1), bin_ops),
            (lambda o: fn_bin_int(o, inp0_int, inp1_int), bin_int_ops),
            (lambda o: fn_tensor_and_int(o, inp0_int, 0), tensor_and_int_ops),
        ]

        # gather the reverse functions
        rsetups_and_oplists = [
            (
                lambda o: fn_bin(o, 1, inp1),
                bin_ops,
            ),  # Get r* ops, (ex. __sub__(int, Tensor) -> __rsub__(Tensor, int))
            (lambda o: fn_bin_int(o, 1, inp1_int), bin_int_ops),
            (lambda o: fn_tensor_and_int(o, 0, inp0_int), tensor_and_int_ops),
        ]

        skips = {operator.not_}  # Has local scalar dense call which graph breaks
        rskips = {
            operator.matmul,
            operator.imatmul,
            operator.getitem,
        }  # Doesn't type check with reversed args

        def run_checks(setups_and_oplists, skips, ref_map):
            nonlocal valid
            nonlocal expected_func
            for setup_fn, op_list in setups_and_oplists:
                for op in op_list:
                    if op in skips or op not in ref_map:
                        continue
                    with FuncEquivMode():
                        expected_func = ref_map[op]
                        setup_fn(op)
                        self.assertTrue(valid)

                    expected_func = None
                    valid = False

        run_checks(setups_and_oplists, skips, BUILTIN_TO_TENSOR_FN_MAP)
        run_checks(rsetups_and_oplists, rskips, BUILTIN_TO_TENSOR_RFN_MAP)

    @requires_cuda
    def test_flex_attention(self):
        import torch
        from torch.nn.attention.flex_attention import create_block_mask, flex_attention

        torch.set_default_device("cuda")

        flex_attention = torch.compile(flex_attention, dynamic=False)

        prefix_lengths = torch.arange(8)

        def prefix_lm(b, h, q, kv):
            return prefix_lengths[b] >= kv

        # This runs in fullgraph already
        mask = create_block_mask(prefix_lm, 8, None, 512, 512, _compile=True)

    def test_register_hook(self):
        import functools

        def my_hook(grad, *, k=0):
            return grad + k

        hook = functools.partial(my_hook, k=3)

        class MyMod(torch.nn.Module):
            def forward(self, x):
                x.register_hook(hook)
                y = x.mul(2)
                z = y.mul(3)
                return (z,)

        mod = MyMod()
        x = torch.ones(4, requires_grad=True)

        with torch.device("cpu"):
            out = torch.compile(mod, fullgraph=True)(x)


if __name__ == "__main__":
    from torch._dynamo.test_case import run_tests

    run_tests()