1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
# Owner(s): ["module: dynamo"]
import unittest
import torch
import torch._dynamo.test_case
import torch._functorch.config
import torch.utils.checkpoint
from torch._dynamo.testing import (
AotEagerAndRecordGraphs,
EagerAndRecordGraphs,
normalize_gm,
)
from torch.testing._internal.inductor_utils import HAS_CUDA
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
def normalize_graph(gm):
return normalize_gm(gm.print_readable(print_output=False))
class InvokeQuantTest(torch._higher_order_ops.PrimHOPBase):
def __init__(self):
super().__init__("invoke_quant_test")
def __call__(self, subgraph, operands, *, scheme):
return super().__call__(subgraph, operands, scheme=scheme)
invoke_quant_test = InvokeQuantTest()
class PrimHOPBaseTest(torch._dynamo.test_case.TestCase):
# TODO: flip to False later, we're landing a refactor PR and don't want to merge conflict
@torch._dynamo.config.patch(assume_static_by_default=True)
def test_dynamo(self):
def inner(x, y):
return (x @ y).sin().cos()
x = torch.randn(3, 3, requires_grad=True)
y = torch.randn(3, 3, requires_grad=True)
backend = EagerAndRecordGraphs()
@torch.compile(backend=backend)
def f(x, y):
return invoke_quant_test(inner, (x, y), scheme="nf4")
out = f(x, y)
self.assertEqual(out, inner(x, y))
assert len(backend.graphs) == 1
self.assertExpectedInline(
normalize_graph(backend.graphs[0]),
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[3, 3]", L_y_: "f32[3, 3]"):
l_x_ = L_x_
l_y_ = L_y_
subgraph_0 = self.subgraph_0
invoke_quant_test = torch.ops.higher_order.invoke_quant_test(subgraph_0, (l_x_, l_y_), scheme = 'nf4'); subgraph_0 = l_x_ = l_y_ = None
getitem: "f32[3, 3]" = invoke_quant_test[0]; invoke_quant_test = None
return (getitem,)
class subgraph_0(torch.nn.Module):
def forward(self, l_x_: "f32[3, 3]", l_y_: "f32[3, 3]"):
matmul: "f32[3, 3]" = l_x_ @ l_y_; l_x_ = l_y_ = None
sin: "f32[3, 3]" = matmul.sin(); matmul = None
cos: "f32[3, 3]" = sin.cos(); sin = None
return (cos,)
""", # NOQA: B950
)
@torch._dynamo.config.patch(assume_static_by_default=True)
def test_aot_eager(self):
def inner(x, y):
return (x @ y).sin_().cos()
x = torch.randn(3, 3, requires_grad=True)
y = torch.randn(3, 3, requires_grad=True)
backend = AotEagerAndRecordGraphs()
@torch.compile(backend=backend)
def f(x, y):
return invoke_quant_test(inner, (x, y), scheme="nf4")
out = f(x, y)
result = torch.autograd.grad(out, x, y)
out = inner(x, y)
expected = torch.autograd.grad(out, x, y)
self.assertEqual(result, expected)
assert len(backend.fw_graphs) == 1
self.assertExpectedInline(
normalize_graph(backend.fw_graphs[0]),
"""\
class GraphModule(torch.nn.Module):
def forward(self, primals_1: "f32[3, 3]", primals_2: "f32[3, 3]"):
subgraph0 = self.subgraph0
invoke_quant_test = torch.ops.higher_order.invoke_quant_test(subgraph0, (primals_1, primals_2), scheme = 'nf4'); subgraph0 = None
getitem: "f32[3, 3]" = invoke_quant_test[0]; invoke_quant_test = None
return (getitem, primals_1, primals_2)
class subgraph0(torch.nn.Module):
def forward(self, arg0_1: "f32[3, 3]", arg1_1: "f32[3, 3]"):
mm: "f32[3, 3]" = torch.ops.aten.mm.default(arg0_1, arg1_1); arg0_1 = arg1_1 = None
sin: "f32[3, 3]" = torch.ops.aten.sin.default(mm); mm = None
cos: "f32[3, 3]" = torch.ops.aten.cos.default(sin); sin = None
return (cos,)
""", # NOQA: B950
)
assert len(backend.bw_graphs) == 1
self.assertExpectedInline(
normalize_graph(backend.bw_graphs[0]),
"""\
class GraphModule(torch.nn.Module):
def forward(self, primals_1: "f32[3, 3]", primals_2: "f32[3, 3]", tangents_1: "f32[3, 3]"):
subgraph1 = self.subgraph1
invoke_quant_test_1 = torch.ops.higher_order.invoke_quant_test(subgraph1, (primals_1, primals_2, tangents_1), scheme = 'nf4'); subgraph1 = primals_1 = primals_2 = tangents_1 = None
getitem_1: "f32[3, 3]" = invoke_quant_test_1[0]
getitem_2: "f32[3, 3]" = invoke_quant_test_1[1]; invoke_quant_test_1 = None
return (getitem_1, getitem_2)
class subgraph1(torch.nn.Module):
def forward(self, arg0_1: "f32[3, 3]", arg1_1: "f32[3, 3]", arg2_1: "f32[3, 3]"):
mm: "f32[3, 3]" = torch.ops.aten.mm.default(arg0_1, arg1_1)
clone: "f32[3, 3]" = torch.ops.aten.clone.default(mm)
sin: "f32[3, 3]" = torch.ops.aten.sin.default(mm); mm = None
cos: "f32[3, 3]" = torch.ops.aten.cos.default(sin); cos = None
sin_1: "f32[3, 3]" = torch.ops.aten.sin.default(sin); sin = None
neg: "f32[3, 3]" = torch.ops.aten.neg.default(sin_1); sin_1 = None
mul: "f32[3, 3]" = torch.ops.aten.mul.Tensor(arg2_1, neg); arg2_1 = neg = None
cos_1: "f32[3, 3]" = torch.ops.aten.cos.default(clone); clone = None
mul_1: "f32[3, 3]" = torch.ops.aten.mul.Tensor(mul, cos_1); mul = cos_1 = None
t: "f32[3, 3]" = torch.ops.aten.t.default(arg0_1); arg0_1 = None
mm_1: "f32[3, 3]" = torch.ops.aten.mm.default(t, mul_1); t = None
t_1: "f32[3, 3]" = torch.ops.aten.t.default(arg1_1); arg1_1 = None
mm_2: "f32[3, 3]" = torch.ops.aten.mm.default(mul_1, t_1); mul_1 = t_1 = None
return [mm_2, mm_1]
""", # NOQA: B950
)
def test_aliasing_mutation_error(self):
def inner(x, y):
return x
def inner2(x, y):
x.sin_()
return x + y
x = torch.randn(3, 3)
y = torch.randn(3, 3)
@torch.compile(backend="eager", fullgraph=True)
def f(inner, x, y):
return invoke_quant_test(inner, (x, y), scheme="nf4")
with self.assertRaisesRegex(RuntimeError, "aliases of the inputs"):
out = f(inner, x, y)
with self.assertRaisesRegex(RuntimeError, "inputs are mutated"):
out = f(inner2, x, y)
def test_eager_call(self):
def inner(x, y):
return x + y
x = torch.randn(3, 3)
y = torch.randn(3, 3)
with self.assertRaisesRegex(RuntimeError, "torch.fx.GraphModule"):
invoke_quant_test(inner, (x, y), scheme="nf4")
from functorch import make_fx
result = make_fx(inner)(x, y)
# smoke test
invoke_quant_test(result, (x, y), scheme="nf4")
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|