1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
# Owner(s): ["module: dynamo"]
from typing import Callable, Dict, List, NamedTuple, Optional
import torch
import torch._dynamo
from torch._dynamo.test_case import run_tests, TestCase
from torch._dynamo.testing import CompileCounter, same
"""
This is an example of a pure-python version of autograd implemented by
@zdevito. It represents a rather challenging test case for TorchDynamo
to push the limits of what it can do.
"""
_name: int = 0
def fresh_name() -> str:
"""create a new unique name for a variable: v0, v1, v2"""
global _name
r = f"v{_name}"
_name += 1
return r
class Variable:
def __init__(self, value: torch.Tensor, name: Optional[str] = None):
self.value = value
self.name = name or fresh_name()
# We need to start with some tensors whose values were not computed
# inside the autograd. This function constructs leaf nodes.
@staticmethod
def constant(value: torch.Tensor, name: Optional[str] = None):
return Variable(value, name)
def __repr__(self):
return repr(self.value)
# This performs a pointwise multiplication of a Variable, tracking gradients
def __mul__(self, rhs: "Variable") -> "Variable":
# defined later in the notebook
return operator_mul(self, rhs)
def __add__(self, rhs: "Variable") -> "Variable":
return operator_add(self, rhs)
def sum(self, name: Optional[str] = None) -> "Variable":
return operator_sum(self, name)
def expand(self, sizes: List[int]) -> "Variable":
return operator_expand(self, sizes)
class TapeEntry(NamedTuple):
# names of the inputs to the original computation
inputs: List[str]
# names of the outputs of the original computation
outputs: List[str]
# apply chain rule
propagate: "Callable[List[Variable], List[Variable]]"
gradient_tape: List[TapeEntry] = []
def reset_tape():
gradient_tape.clear()
global _name
_name = 0
def grad(L, desired_results: List[Variable]) -> List[Variable]:
# this map holds dL/dX for all values X
dL_d: Dict[str, Variable] = {}
# It starts by initializing the 'seed' dL/dL, which is 1
dL_d[L.name] = Variable(torch.ones(()))
# print(f'd{L.name} ------------------------')
# look up dL_dentries. If a variable is never used to compute the loss,
# we consider its gradient None, see the note below about zeros for more information.
def gather_grad(entries: List[str]):
return [dL_d[entry] if entry in dL_d else None for entry in entries]
# propagate the gradient information backward
for entry in reversed(gradient_tape):
dL_doutputs = gather_grad(entry.outputs)
if all(dL_doutput is None for dL_doutput in dL_doutputs):
# optimize for the case where some gradient pathways are zero. See
# The note below for more details.
continue
# perform chain rule propagation specific to each compute
dL_dinputs = entry.propagate(dL_doutputs)
# Accumulate the gradient produced for each input.
# Each use of a variable produces some gradient dL_dinput for that
# use. The multivariate chain rule tells us it is safe to sum
# all the contributions together.
for input, dL_dinput in zip(entry.inputs, dL_dinputs):
if input not in dL_d:
dL_d[input] = dL_dinput
else:
dL_d[input].value += dL_dinput.value
# print some information to understand the values of each intermediate
# for name, value in dL_d.items():
# print(f'd{L.name}_d{name} = {value.name}')
# print(f'------------------------')
return gather_grad(desired.name for desired in desired_results)
def operator_mul(self: Variable, rhs: Variable) -> Variable:
if isinstance(rhs, float) and rhs == 1.0:
# peephole optimization
return self
# define forward
r = Variable(self.value * rhs.value)
# print(f'{r.name} = {self.name} * {rhs.name}')
# record what the inputs and outputs of the op were
inputs = [self.name, rhs.name]
outputs = [r.name]
# define backprop
def propagate(dL_doutputs: List[Variable]):
(dL_dr,) = dL_doutputs
dr_dself = rhs # partial derivative of r = self*rhs
dr_drhs = self # partial derivative of r = self*rhs
# chain rule propagation from outputs to inputs of multiply
dL_dself = dL_dr * dr_dself
dL_drhs = dL_dr * dr_drhs
dL_dinputs = [dL_dself, dL_drhs]
return dL_dinputs
# finally, we record the compute we did on the tape
gradient_tape.append(TapeEntry(inputs=inputs, outputs=outputs, propagate=propagate))
return r
def operator_add(self: Variable, rhs: Variable) -> Variable:
# Add follows a similar pattern to Mul, but it doesn't end up
# capturing any variables.
r = Variable(self.value + rhs.value)
# print(f'{r.name} = {self.name} + {rhs.name}')
def propagate(dL_doutputs: List[Variable]):
(dL_dr,) = dL_doutputs
dr_dself = 1.0
dr_drhs = 1.0
dL_dself = dL_dr * dr_dself
dL_drhs = dL_dr * dr_drhs
return [dL_dself, dL_drhs]
gradient_tape.append(
TapeEntry(inputs=[self.name, rhs.name], outputs=[r.name], propagate=propagate)
)
return r
def operator_sum(self: Variable, name: Optional[str]) -> "Variable":
r = Variable(torch.sum(self.value), name=name)
# print(f'{r.name} = {self.name}.sum()')
def propagate(dL_doutputs: List[Variable]):
(dL_dr,) = dL_doutputs
size = self.value.size()
return [dL_dr.expand(*size)]
gradient_tape.append(
TapeEntry(inputs=[self.name], outputs=[r.name], propagate=propagate)
)
return r
def operator_expand(self: Variable, sizes: List[int]) -> "Variable":
assert self.value.dim() == 0 # only works for scalars
r = Variable(self.value.expand(sizes))
# print(f'{r.name} = {self.name}.expand({sizes})')
def propagate(dL_doutputs: List[Variable]):
(dL_dr,) = dL_doutputs
return [dL_dr.sum()]
gradient_tape.append(
TapeEntry(inputs=[self.name], outputs=[r.name], propagate=propagate)
)
return r
def simple(a, b):
t = a + b
return t * b
class TestPythonAutograd(TestCase):
def _common(self, fn, expected_ops):
args1 = [torch.randn(10), torch.randn(10)]
args2 = [torch.randn(10), torch.randn(10)]
cnt = CompileCounter()
fn_dynamo = torch._dynamo.optimize_assert(cnt)(fn)
reset_tape()
res1 = fn_dynamo(*args1)
reset_tape()
res2 = fn_dynamo(*args2)
reset_tape()
self.assertTrue(same(res1, fn(*args1)))
reset_tape()
self.assertTrue(same(res2, fn(*args2)))
reset_tape()
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, expected_ops)
def test_forwards1(self):
def fn(a, b):
a = Variable.constant(a, name="a")
b = Variable.constant(b, name="b")
loss = simple(a, b).sum()
return loss
self._common(fn, 3)
def test_forwards2(self):
def fn(a, b):
reset_tape()
a = Variable.constant(a, name="a")
b = Variable.constant(b, name="b")
loss = simple(a, b).sum()
reset_tape()
return loss
self._common(fn, 3)
def test_backwards1(self):
def fn(a, b):
a = Variable.constant(a, name="a")
b = Variable.constant(b, name="b")
loss = simple(a, b).sum()
return grad(loss, [a, b])
self._common(fn, 8)
def test_backwards2(self):
def fn(a, b):
reset_tape()
a = Variable.constant(a, name="a")
b = Variable.constant(b, name="b")
loss = simple(a, b).sum()
res = grad(loss, [a, b])
reset_tape()
return res
self._common(fn, 8)
def test_split(self):
v1 = Variable.constant(torch.randn(10), name="a")
v2 = Variable.constant(torch.randn(10), name="b")
cnt = CompileCounter()
def forward(a, b):
return simple(a, b).sum()
reset_tape()
loss1 = forward(v1, v2)
grad1 = grad(loss1, [v1, v2])
reset_tape()
opt_forward = torch._dynamo.optimize_assert(cnt)(forward)
opt_grad = torch._dynamo.optimize_assert(cnt)(grad)
loss2 = opt_forward(v1, v2)
# force two frames
grad2 = opt_grad(loss2, [v1, v2])
self.assertTrue(same(loss1, loss2))
self.assertTrue(same(grad1, grad2))
self.assertEqual(cnt.frame_count, 2)
self.assertEqual(cnt.op_count, 8)
if __name__ == "__main__":
run_tests()
|